Math, asked by BrianKingJoseph, 5 months ago

volume and surface area of solid hemispehere are numerically equal . what is the diameter of hemispehere​

Answers

Answered by muskan65282
0

Answer:

answer is 9 cm

Step-by-step explanation:

3πr^2=2/3πr^3

3=2/3r

r=9/2cm

diameter =2r

diameter=2*9/2

diameter=9cm

Answered by Anonymous
117

\sf\orange{ \underline{Question:-}}

Volume and surface area of solid hemispehere are numerically equal . what is the diameter of hemispehere.

\sf\orange{ \underline{Required\:Answer:-}}

The diameter of hemisphere is 9 units.

\sf\underline\pink{Given:-}

• Volume and Surface area of solid hemisphere are numerically equal.

\sf\underline\blue{To\:Find:-}

• Diameter of hemisphere

\sf\underline\red{Solution:-}

Volume of hemisphere = \sf \dfrac{2}{3} \pi r^3

Surface area of hemisphere = \sf 3\pi r^2

=> \sf 3\pi r^2 = \dfrac{2}{3} \pi r^3

=> \sf r = \dfrac{9}{2}

=> \sf 2r = 9

=> \sf D = 9

Therefore, Diameter of hemisphere (D) = 9 units.

Additional Information:-

formulas related to SA and volume

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

if you're unable to see the answer, see answer at brainly.in at any web browser.

see answer at: https://brainly.in/question/31954710

Similar questions