Math, asked by mansilanke, 5 months ago

volume of a cone is 6280 cubic cm and base radius of the cone is 30 cm. Find its perpendicular height.( π=3.14)​

Answers

Answered by Anonymous
4

☆Answer☆

Given:-

  • Volume of cone = 6280 cm³
  • Base radius of the cone = 30 cm

To Find:-

  • Perpendicular Height of the cone

Solution:-

Let the Perpendicular height of the cone be 'h' cm.

Radius of the base, r = 30 cm

Volume of the cone = 6280 cm³

πr²h/3 = 6280 cm³

(1/3) × 3.14 × (30) × h = 6280 cm³

=> h = (6280×3)/(3.14×900)

On further solving, we get:

h = 6.67 cm (approx)

Thus, the perpendicular height of the cone is 6.67 cm.

Answered by Anonymous
8

Answer:

6.67

Step-by-step explanation:

 \blue{ \bf{ \underline{QUESTION} : }}

Volume of a cone is 6280 cubic cm and base radius of the cone is 30 cm. Find its perpendicular height.

_________________________

 \boxed{ \huge{ \bold{ Given}}}

  • Volume of the Cone = 6280 cm³

 \\  \\  \\

  • Radius (r) = 30 cm

 \boxed {\huge{ \bold{ to \: find}}}

 \\  \\  \\

  • Height of the Cone

 \\  \\  \\  \\

 \star{ \pink{ \underline{ \underline{solution :  - }}}}

 \\  \\

We Know

 \boxed{ \boxed{ \red{ \sf{Volume  \: of \: the \:   Cone \:  =   \frac{1}{3}}\pi {r}^{2}h }}}

 \:  \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:   \: {:  {\implies{ \sf{6280 =  \frac{1}{3}  \times 3.14 \times  {30}^{2}  \times h \:  \:  \:  \: }}}}

 \:  \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:   \: {:  {\implies{ \sf{6280 =  \frac{1}{ \cancel3}  \times 3.14 \times \cancel  {900 } \times h \:  \:  \:  \: }}}}

 \\  \\  \\

 \:  \:  \:  \:  \:   \: {:  {\implies{ \sf{6280 =  3.14 \times 300 \times h \:  \:  \:  \: }}}}

 \\  \\  \\

\:  \:  \:  \:  \:   \: {:  {\implies{ \sf{6280 =  942 \times h \:  \:  \:  \: }}}}

 \\  \\  \\

\:  \:  \:  \:  \:   \: {:  {\implies{ \sf{ \cancel \frac{6280}{942}  =   h \:  \:  \:  \: }}}}

 \\  \\  \\

\:  \:  \:  \:  \:   \: {:  {\implies{ \sf{ \boxed{ \frak{ \red{6.67 \: cm = {  h \:  \:  \:  \: }}}}}}}}

 \\  \\  \\

 \therefore {\bold{Height = 6.67  cm }}

============================================

More You Know

  • The volume of a cylinder = Area of the base × Height of the cylinder = πr²h

  • Lateral Surface Area = Perimeter of base × height = 2πrh = πdh

  • Total Surface Area = Lateral Surface Area + Area of bases = 2πrh + 2πr² = 2πr (h+r)

  • Volume of Hollow Cylinder = Vol of External Cylinder – Vol of Internal Cylinder = πR²h – πr²h = π (R² – r²) h

  • Lateral Surface (hollow cylinder) = External Surface Area + Internal Surface Area = 2πRh + 2πrh = 2π(R+r)h

  • Total Surface Area (cylinder) = Lateral Area = Area of bases = 2π(R+r)h + 2π (R² – r²) h

  • Volume of Cone = 1/3 π r² h

  • Lateral Surface = πrl

  • where l = slant height = √(r²+ h² )

  • Total Surface Area = πrl + π r²

  • Surface Area of a Sphere = 4 times

_________________________

Similar questions