Math, asked by sandeepmhatre2317, 1 month ago

volume of acone is 753. 60cm. the radius of its base is 12 cm then complete the followings activity to find the heught of the cone​

Answers

Answered by mddilshad11ab
182

\sf\small\underline\purple{Correct\: Question:-}

The volume of acone is 753. 60cm³. The radius of its base is 12 cm then complete the followings activity to find the height of the cone.

\sf\small\underline\purple{Given:-}

\sf{\leadsto Volume\:_{(cone)}=753.60\:cm^3}

\sf{\leadsto Base\: radius\:_{(cone)}=12cm}

\sf\small\underline\purple{To\: Find:-}

\sf{\leadsto Height\:_{(cone)}=?}

\sf\small\underline\purple{Solution:-}

To calculate the height of cone . Simply by applying formula of volume of cone. As given in the question that radius is 12cm and it's volume is 753.60cm³.

\sf\small\underline\purple{Calculation\: begin:-}

\sf{\leadsto Volume\:_{(cone)}=\dfrac{1}{3}\pi\:r^2\:h}

\sf{\leadsto 753.60=\dfrac{22*12*12*h}{7*3}}

\sf{\leadsto 22*12*12*h=753.60*7*3}

\sf{\leadsto 3168h=15825.6}

\sf{\leadsto h=5cm(approx)}

\sf\large{Hence,}

\sf\pink{\implies Height\:_{(cone)}=5cm}

Answered by Anonymous
79

Answer:

Appropriate Question :-

  • The volume of a cone is 753.60 cm³. The radius of its base is 12 cm, then the following activity to find the height of the cone.

Given :-

  • The volume of a cone is 753.60 cm³.
  • The radius of its base is 12 cm.

To Find :-

  • What is the height of the cone.

Formula Used :

\clubsuit Volume Of Cone Formula :

\mapsto \sf\boxed{\bold{\pink{Volume\: Of\: Cone =\: \dfrac{1}{3}{\pi}r^2h}}}\\

where,

  • π = pie or 22/7
  • r = Radius
  • h = Height

Solution :-

Given :

\bigstar\: \: \: \rm{\bold{Volume =\: 753.60\: cm^3}}\\

\bigstar\: \: \: \rm{\bold{Radius =\: 12\: cm}}\\

According to the question by using the formula we get,

\longrightarrow \sf \dfrac{1}{3} \times \dfrac{22}{7} \times (12)^2 \times h =\: 753.60\\

\longrightarrow \sf \dfrac{22}{21} \times 12 \times 12 \times h =\: \dfrac{75360}{100}\\

\longrightarrow \sf \dfrac{22}{21} \times 144 \times h =\: \dfrac{75360}{100}\\

\longrightarrow \sf h =\: \dfrac{75360 \times 21}{100 \times 22 \times 144}\\

\longrightarrow \sf h =\: \dfrac{158256\cancel{0}}{31680\cancel{0}}

\longrightarrow \sf h =\: \dfrac{\cancel{158256}}{\cancel{31680}}

\longrightarrow \sf h =\: 4.99\: cm

\longrightarrow \sf\bold{\red{h =\: 5\: cm(approx)}}

\therefore The height of the cone is 5 cm .

Similar questions