Math, asked by devinenihemanth64, 9 months ago

we should find the centroia of
the triangle whose vertices are
(3, 4) (-7,-2) and (19-5)
x G x₂ Y₂ x y z​

Answers

Answered by sambabitra
0

Answer:

Step-by-step explanation:

\green{\therefore{\text{Centroid(G)=}(2,-1)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (3,-5)} \\ \\ : \implies \text{Coordinate \: of \: B = (-7,4)} \\ \\ : \implies \text{Coordinate \: of \: C = (10,-2)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

\bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{3+(-7) + 10}{3} \\ \\ : \implies x = \frac{6}{3} \\ \\ \green{: \implies x =2} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{-5+4+(-2)}{3} \\ \\ : \implies y = \frac{-3}{3} \\ \\ \green{: \implies y =-1} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(2,-1)}

Click to let others know, how helpful is it

Similar questions