What are the dimensions of A/B in the relation F = A√x + Bt^2,
Answers
Answered by
6
F = A√x + Bt^2
Dimension of force = [M L T^(-2)]
i) Dimension of A√x = Dimension of force = [M L T^(-2)]
Dimension of √x = [L^(1/2)]
Dimension of A = [M L T^(-2)] ÷ [L^(1/2)] = [ M L^(1 - 1/2) T^(-2) ] = [M L^(1/2) T^(-2)]
Dimension of A = [M L^(1/2) T^(-2)]
ii) Dimension of Bt^2 = Dimension of force = [M L T^(-2)]
Dimension of t^2 = [T^(2)]
Dimension of B = [M L T^(-2)] ÷ [T^(2)] = [ M L T^(-2-2) ] = [M L T^(-4)]
Dimension of B = [M L T^(-4)]
Dimension of force = [M L T^(-2)]
i) Dimension of A√x = Dimension of force = [M L T^(-2)]
Dimension of √x = [L^(1/2)]
Dimension of A = [M L T^(-2)] ÷ [L^(1/2)] = [ M L^(1 - 1/2) T^(-2) ] = [M L^(1/2) T^(-2)]
Dimension of A = [M L^(1/2) T^(-2)]
ii) Dimension of Bt^2 = Dimension of force = [M L T^(-2)]
Dimension of t^2 = [T^(2)]
Dimension of B = [M L T^(-2)] ÷ [T^(2)] = [ M L T^(-2-2) ] = [M L T^(-4)]
Dimension of B = [M L T^(-4)]
Similar questions
English,
7 months ago
Science,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
Physics,
1 year ago