Math, asked by vigneshkgirish80351, 17 hours ago

What are the two rightmost digits of 3^33+ 33^333?

Answers

Answered by zumba12
0

The last two right most digit is 36

Step- by step -Explanation:

3^{33} =81^{8}.3

=(100-19)^{8} .3

=(-19)^{8}.3

=(-19)^{5} .(-19)^{3} .3

=(1-20)^{5} .(1-20)^{3} .3

=1.(1-3.20).3

=(-59).3

=-177

=23(mod100).

33^{333} =(30+3)^{333}

=3^{333} +333.3^{332} .30

=3^{333} .(1+3330)

=3^{300} .3^{33} .31

=(3^{20} )^{15}.3^{33} .31

=1.23.31

=600+20+90+3

=13

Hence

3^{33} +33^{33} =23+13=36(mod100) .

Therefore, the last two digits are 36 .

Similar questions