Math, asked by vishnupriyadevan, 1 year ago

what are the values of all six ratios in trigonometry

Answers

Answered by Anonymous
3
Hey there!

TRIGONOMETRIC RATIOS:
Considering angle α

sine α = Perpendicular/Hypotenuse = AC/BC

cosine α = Base/Hypotenuse = AB/BC

tangent α = Perpendicular/Base = AC/AB

cotangent α = Base/Perpendicular = AB/AC

secant α = Hypotenuse/Base = BC/AB

cosecant α = Hypotenuse/Perpendicular = BC/AC

HOPE IT HELPED ^_^
#follow me
#brainly star
Attachments:
Answered by ManasiShah
2
Sin0°=0

Sin 30°=1/2

Sin45°=
1 \div  \sqrt{2}

Sin60°=
 \sqrt{3 }  \div 2
Sin90°=1

Cos0°=1

Cos30°=
 \sqrt{3}  \div 2
Cos45°=
1 \div  \sqrt{2}
Cos60°=1/2

Cos90°=0

Tan0°=0

Tan30°=
1 \div  \sqrt{3}
Tan45°=1

Tan60°=
 \sqrt{3}
Tan90°=
 \infty

Cosec0°=
 \infty
Cosec30°=2

Cosec45°=
 \sqrt{2}
Cosec60°=
2 \div  \sqrt{3}
Cosec90°=1


Sec0°=1

Sec30°=
2 \div  \sqrt{3}
Sec45°=
 \sqrt{2}

Sec60°=2

Sec90°=
 \infty
Cot0°=
 \infty
Cot30°=
 \sqrt{3}
Cot45°=1

Cot60°=
1 \div  \sqrt{3}
Cot90°=1

Similar questions