What are zeroes of quadratic eqn 9x² + 6x + 1
Answers
▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬
▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬
To find zeroes
p(x)=0
9x² + 6x + 1 = 0
9x² + 3x + 3x + 1 = 0
3x(3x+1)+1(3x+1)=0
(3x+1)(3x+1)=0
(3x+1)²=0
3x+1=0
3x= -1
Thus, the quadratic eqn has equal roots
Answer:
Step-by-step explanation:
Hello,
We have,
9x²+6x+1
There are 3 ways with which we can find zeroes of this equation,factorization,using quadratic formula or by completing the square method...
1.facforisation,
9x²+6x+1
Splitting the middle term
9x²+3x+3x+1
3x(3x+1)+1(3x+1)
(3x+1)(3x+1)
Hence we get 2 factors therefore,zeroes are -1/3,-1/3
2.By using quadratic formula
X=-b+_root b²-4ac/2a
X=-6+_root 6²-9×4×1/2×9
X=-6+_0/18
X=-6/18=-1/3,-1/3
3.By completing the square method,
9x²+6x+1
X²+2/3×+1/9=0
X²+2/3X=-1/9
X²+2/3X+(1/3)²=-1/9+(1/3)²
(X+1/3)²=-1/9+1/9
(X+1/3)²=0
X+1/3=0
X=-1/3,-1/3
Hope it helps,please mark me as brainliest......