Chemistry, asked by shalu8104, 1 year ago

What do all the four quantum numbers signify? write all the possible values of l and m for n=3?

Answers

Answered by sunisri1999
0

Explanation:

A total of four quantum numbers are used to describe completely the movement and trajectories of each electron within an atom. The combination of all quantum numbers of all electrons in an atom is described by a wave function that complies with the Schrödinger equation. Each electron in an atom has a unique set of quantum numbers; according to the Pauli Exclusion Principle, no two electrons can share the same combination of four quantum numbers. Quantum numbers are important because they can be used to determine the electron configuration of an atom and the probable location of the atom's electrons. Quantum numbers are also used to understand other characteristics of atoms, such as ionization energy and the atomic radius.

In atoms, there are a total of four quantum numbers: the principal quantum number (n), the orbital angular momentum quantum number (l), the magnetic quantum number (ml), and the electron spin quantum number (ms). The principal quantum number, n , describes the energy of an electron and the most probable distance of the electron from the nucleus. In other words, it refers to the size of the orbital and the energy level an electron is placed in. The number of subshells, or l , describes the shape of the orbital. It can also be used to determine the number of angular nodes. The magnetic quantum number, ml, describes the energy levels in a subshell, and ms refers to the spin on the electron, which can either be up or down.

The Principal Quantum Number ( n )

The principal quantum number, n , designates the principal electron shell. Because n describes the most probable distance of the electrons from the nucleus, the larger the number n is, the farther the electron is from the nucleus, the larger the size of the orbital, and the larger the atom is. n can be any positive integer starting at 1, as n=1 designates the first principal shell (the innermost shell). The first principal shell is also called the ground state, or lowest energy state. This explains why n can not be 0 or any negative integer, because there exists no atoms with zero or a negative amount of energy levels/principal shells. When an electron is in an excited state or it gains energy, it may jump to the second principle shell, where n=2 . This is called absorption because the electron is "absorbing" photons, or energy. Known as emission, electrons can also "emit" energy as they jump to lower principle shells, where n decreases by whole numbers. As the energy of the electron increases, so does the principal quantum number, e.g., n = 3 indicates the third principal shell, n = 4 indicates the fourth principal shell, and so on.

n=1,2,3,4…(1)

Example 1

If n = 7, what is the principal electron shell?

Example 2

If an electron jumped from energy level n = 5 to energy level n = 3, did absorption or emission of a photon occur?

Answer

The Orbital Angular Momentum Quantum Number ( l )

The orbital angular momentum quantum number l determines the shape of an orbital, and therefore the angular distribution. The number of angular nodes is equal to the value of the angular momentum quantum number l . (For more information about angular nodes, see Electronic Orbitals.) Each value of l indicates a specific s, p, d, f subshell (each unique in shape.) The value of l is dependent on the principal quantum number n . Unlike n , the value of l can be zero. It can also be a positive integer, but it cannot be larger than one less than the principal quantum number ( n−1 ):

Similar questions