Physics, asked by israefilani7, 1 year ago

what fraction of a ship lies below the surface of water given that the density of water is 1.03×10^3 kg/m^3 ,density of ship is 0.92×10^3kg/m^3

Answers

Answered by lidaralbany
7

Answer: The fraction of a ship lies below the surface of water is f = \dfrac{11}{1000}.

Explanation:

Given that,

Density of water \rho_{w}= 1.03\times10^{3}\ kg/m^3

Density of ship \rho_{s}= 0.92\times10^{3}\ kg/m^3

Using buoyant force

Weight of displaced water= weight of ship

m_{w}g=m_{s}g

\rho_{w}V_{w}g=\rho_{s}V_{s}g

\dfrac{V_{w}}{V_{s}}=\dfrac{\rho_{s}}{\rho_{w}}

The fraction of a ship lies below the surface of water

f = 1-\dfrac{V_{w}}{V_{s}}

f = 1-\dfrac{\rho_{s}}{\rho_{w}}

f = 1-\dfrac{0.92\times10^{3}}{1.03\times10^{3}}

f = \dfrac{11}{1000}

Hence, The fraction of a ship lies below the surface of water is f = \dfrac{11}{1000}.

Answered by AnIntrovert
73

\huge{\red{\star}} {\blue{\huge{\textsf{Hello Mate}}}} \huge{\red{\star}}

Given:

Pressure of water at a certain depth = 80 atm

At the surface of water, density of water (d) = \begin{lgathered}1.013 \times {10}^{13} \: \: \frac{kg}{ {m}^{3} } \\\end{lgathered}

To Find:

Density of water at a certain depth

\huge{\red{\star}} {\blue{\underline{\huge{\textsf{Solution}}}}} \huge{\red{\star}}

Let Volume at surface of water = \begin{lgathered}\frac{m}{ d_{1} } \\\end{lgathered}

Let volume at a certain depth = \begin{lgathered}\frac{m}{ d_{2} } \\\end{lgathered}

Change in volume =

\begin{lgathered}v_{2} - v_{1} \\ \\ = \frac{m}{ d_{2} } - \frac{m}{ d_{1} } \\ \\ = m( \frac{1}{ d_{2} } - \frac{1}{ d_{1} } ) \\ \\\end{lgathered}

We know Bulk modulus (B) =

\begin{lgathered}\frac{change \: \: in \ \: pressure \: \times \: volume}{change \: \: in \: \: volume} \\\end{lgathered}

Compressibility of water = \begin{lgathered}\frac{1} {b} \\ \\ = \frac{change \: \: in \: \: volume \: \: }{change \: \: in \: \: pressure \: \times \: volume} \\ \\ = 45.8 \times {10}^{ - 11 \:} pascals\end{lgathered}

Let change in pressure = dp

Now,

\begin{lgathered}45.8 \times {10}^{ - 11} = \frac{m( \frac{1}{ d_{2} } - \frac{1}{ d_{1}} ) }{dp \times \frac{m}{ d_{1} } } \\ \\ 45.8 \times {10}^{ - 11} = \frac{ d_{1} }{dp}( \frac{1}{ d_{2} } - \frac{1}{ d_{1} } ) \\ \\ 45.8 \times {10}^{ - 11} = \frac{1}{dp} (1 - \frac{ d_{1} }{d _{2} } ) \\ \\\end{lgathered}

Substitute all the given values,

\begin{lgathered}45.8 \times {10}^{ - 11} = 1 - (\frac{1.03 \: \times \: {10}^{3} }{ d_{2} } ) \: \times \: \frac{1}{80 \times 1.013 \: \times \: {10}^{5} } \\ \\ by \: \: solving \\ \\ d_{2} = 1.034 \times {10}^{3} \: \: \frac {kg}{ {m}^{3} }\end{lgathered}

\huge{\blue{\star}} {\red{\underline{\huge{\textsf{Hope It Helps}}}}} \huge{\blue{\star}}

Similar questions