Physics, asked by tushargupta0826, 8 months ago

What is (a) the highest, (b) the lowest total resistance that can be secured by combinations of four coils of resistance 4 Ω, 8 Ω, 12 Ω, 24 Ω?​

Answers

Answered by SubikshaaS
2

Answer:

a.) 48

b.) 2

Explanation:

a.) Resistance in series is greater than the greatest so , highest resistance :

R = 4+8+12+24 = 48 ohm

b.) Resistance in parallel is smaller than the smallest. so, lowest resistance :

1/ R = 1/4+1/8+1/12+1/24 = 6+3+2+1/24 = 12/24 ohm

R = 2 ohm

Answered by tanishqsaini39
0

Explanation:

Given:−

\rm\:R_1=4\text{\O}megaR

1

=4Ømega

\rm\:R_2=8\text{\O}megaR

2

=8Ømega

\rm\:R_3=12\text{\O}megaR

3

=12Ømega

\rm\:R_4=24\text{\O}megaR

4

=24Ømega

{\bold{\orange{\underline{\pink{To}\:\red{Fi}\purple{nd}\green{:-}}}}}

ToFind:−

\rm\:The\:highest\:resistance=?Thehighestresistance=?

\rm\:The\:lowest\:resistance=?Thelowestresistance=?

{\bold{\blue{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

Solution:−

\rm\:(a)(a) The highest resistance can be secured by connecting,all four coil in series.

\tt\:In\:this\:case:-Inthiscase:−

\rm\:R=R_1+R_2+R_3+R_4R=R

1

+R

2

+R

3

+R

4

\rm\:R=4+8+12+24R=4+8+12+24

\rm\:R=48\text{\O}megaR=48Ømega

Thus,the highest resistance which can be secured is 48 Ω.

\rm\:(b)(b) The lowest resistance can be secured by connecting all four coils in parallel.

\tt\:In\:this\:case:-Inthiscase:−

\rm\:\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+\dfrac{1}{R_4}

R

1

=

R

1

1

+

R

2

1

+

R

3

1

+

R

4

1

\rm\:\dfrac{1}{R}=\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{24}

R

1

=

4

1

+

8

1

+

12

1

+

24

1

\rm\:\dfrac{1}{R}=\dfrac{6+3+2+1}{24}

R

1

=

24

6+3+2+1

\rm\:\dfrac{1}{R}=\cancel\dfrac{12}{24}

R

1

=

24

12

\rm\:\dfrac{1}{R}=\dfrac{1}{2}

R

1

=

2

1

\rm\:R=2\text{\O}megaR=2Ømega

Thus,the lowest resistance which can be secured is 2 Ω.

Similar questions