what is bierut test ? give answer in details
Answers
Answered by
0
The biuret test (Piotrowski's test) is a chemical test used for detecting the presence of peptide bonds. In the presence of peptides, a copper(II) ion forms violet-colored coordination complexes in an alkalinesolution.[1] Several variants on the test have been developed, such as the BCA test and the Modified Lowry test.[2]
The biuret reaction can be used to assess the concentration of proteins because peptide bonds occur with the same frequency per amino acid in the peptide. The intensity of the color, and hence the absorption at 540 nm, is directly proportional to the protein concentration, according to the Beer-Lambert law.
Despite its name, the reagent does not in fact contain biuret ((H2N-CO-)2NH). The test is named so because it also gives a positive reaction to the peptide-like bonds in the biuret molecule.
In this assay, the copper(II) binds with nitrogens present in the peptides of proteins. In a secondary reaction, the copper(II) is reduced to copper(I). Buffers, such as Tris and ammonia interfere with this assay, therefore rendering this assay inappropriate for protein samples purified from ammonium sulfate precipitation. Due to its insensitivity and little interference by free amino acids, this assay is most useful for whole tissue samples and other sources with high protein concentration.[3]
The biuret reaction can be used to assess the concentration of proteins because peptide bonds occur with the same frequency per amino acid in the peptide. The intensity of the color, and hence the absorption at 540 nm, is directly proportional to the protein concentration, according to the Beer-Lambert law.
Despite its name, the reagent does not in fact contain biuret ((H2N-CO-)2NH). The test is named so because it also gives a positive reaction to the peptide-like bonds in the biuret molecule.
In this assay, the copper(II) binds with nitrogens present in the peptides of proteins. In a secondary reaction, the copper(II) is reduced to copper(I). Buffers, such as Tris and ammonia interfere with this assay, therefore rendering this assay inappropriate for protein samples purified from ammonium sulfate precipitation. Due to its insensitivity and little interference by free amino acids, this assay is most useful for whole tissue samples and other sources with high protein concentration.[3]
Similar questions