What is
bx/a+ay/b=a^2+b^2
x+y=2ab
Please answer fast.
The first correct answer will be the brainiest answer
Answers
Answer:
bx/a +ay/b =a^2+b^2
taking LCM
(b^2x + a^2y)/ab = (a^2 + b^2)
multiplying ab on both sides
b^2x + a^2y = (a^2 + b^2)(ab) --- 1
in other eq.
x + y = 2ab
so, ab = (x+y)/2 --- 2
Substituting 2 in 1
b^2x + a^2y = (a^2 + b^2)(x + y)/2
multiplying 2 on other side
2b^2x + 2a^2y = a^2x + a^2y + b^2x + b^2y
b^2x + a^2y = a^2x + b^2y
b^2x - a^2x = b^2y - a^2y
x(b^2 - a^2) = y(b^2 - a^2)
cancelling on both sides
x=y
Hope it helps :)
Answer:
bx/a +ay/b =a^2+b^2
taking LCM
(b^2x + a^2y)/ab = (a^2 + b^2)
multiplying ab on both sides
b^2x + a^2y = (a^2 + b^2)(ab) --- 1
in other eq.
x + y = 2ab
so, ab = (x+y)/2 --- 2
Substituting 2 in 1
b^2x + a^2y = (a^2 + b^2)(x + y)/2
multiplying 2 on other side
2b^2x + 2a^2y = a^2x + a^2y + b^2x + b^2y
b^2x + a^2y = a^2x + b^2y
b^2x - a^2x = b^2y - a^2y
x(b^2 - a^2) = y(b^2 - a^2)
cancelling on both sides
x=y