Math, asked by parthivlakhani, 1 month ago

what is

d/dx ln(1+x) = ?

Answers

Answered by TrustedAnswerer19
35

 \orange{ \boxed{\boxed{\begin{array}{cc} \bf \to \: Let,   \\  \\  \rm \: y = ln(1 + x) \\  \\ \rm \implies \: \frac{dy}{dx}  =  \frac{d}{dx} \: \{ ln(1 + x) \}  \\  \\  \pink{ {\boxed{\begin{array}{cc} \sf \: we \: know \: that :  \\  \\  \rm \frac{d}{dx}  \: ln \: x =  \frac{1}{x} \\  \\  \rm \frac{d}{dx}  \:  {x}^{n}  = n {x}^{n - 1}  \\  \\  \rm \:  \frac{d}{dx} (constant) = 0 \end{array}}}} \\  \:  \:  \sf \: apply \: this \: \\  \\  \rm    =  \frac{1}{1 + x}. \frac{d}{dx} (1 + x) \\  \\   \rm =  \frac{1}{1 + x} \{  \frac{d}{dx} \: 1 +  \frac{d}{dx} x \}   \\  \\  \rm =  \frac{1}{1 + x} (0 + 1) \\  \\   \rm =  \frac{1}{1 + x} \\  \\  \\  \blue{ \boxed{ \therefore \rm \:  \frac{d}{dx}  \: ln(1 + x) =  \frac{1}{1 + x}}}  \end{array}}}}

Similar questions