Math, asked by Anonymous, 9 months ago

what is derivative of sin(2x+5)​

Answers

Answered by Anonymous
5

\huge\mathfrak{Answer:}

\large\underline{\sf{\blue{Given:}}}

  • We have been given a trigonometric function sin( 2x + 5 )

\large\underline{\sf{\blue{To \: Find:}}}

  • We have to find the derivative of given trigonometric function

\large\underline{\sf{\blue{Concept \: Used:}}}

Chain Rule of Differentiation:

The chain rule is a formula to compute the derivative of a composite function

\boxed{\sf{\dfrac{d}{dx} \: f(g(x))= \dfrac{d}{dx} \:f(g(x)) \times \dfrac{d}{dx} \: g(x)}}

\sf{}

\large\underline{\sf{\blue{Solution:}}}

Given a Trigonometric function in terms of variable x

\implies \boxed{\sf{y = sin(2x+5)}}

\sf{}

\large\underline{\mathfrak{\red{Differentiating \: the \: function}}}

\implies \sf{\dfrac{dy}{dx} = \dfrac{d}{dx} sin(2x+5)}

\implies \sf{\dfrac{dy}{dx} = cos(2x+5) \times \dfrac{d}{dx} (2x+5)}

\implies \sf{\dfrac{dy}{dx} = cos(2x+5) \times \left ( \dfrac{d}{dx} 2x + \dfrac{d}{dx} 5 \right ) }

\implies \sf{\dfrac{dy}{dx} = cos(2x+5) \times 2}

\implies \boxed{\sf{\dfrac{dy}{dx} = 2 \: cos(2x+5) }}

\sf{}

Derivative of sin(2x + 5) is 2cos(2x + 5)

_______________________________

\large\purple{\underline{\underline{\mathtt{Some \: Derivative \: Formulas:}}}}

  • \ \sf{\dfrac{d}{dx} sinx = cosx}

  •  \sf{\dfrac{d}{dx} cosx = - sinx}

  •  \sf{\dfrac{d}{dx} tanx = sec^2 x}

  • \sf{\dfrac{d}{dx} (y + z)= \dfrac{dy}{dx} + \dfrac{dz}{dx}}

  • \sf{\dfrac{d}{dx} k = 0}, where k is constant

________________________________

Similar questions