Math, asked by kritikamina04, 2 months ago

what is hcf of324,576,1080 using prime factorzions​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

 \purple{\rm :\longmapsto\:Prime \:  Factorization \: of \: 324}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:324 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:162 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:81\:\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:27\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

 \purple{\bf :\longmapsto\:Prime \:  Factorization \: of \: 324 =  {2}^{2}  \times  {3}^{4} }

Consider,

 \purple{\bf :\longmapsto\:Prime \:  Factorization \: of \: 576 }

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:576 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:288 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:144\:\:}}\\\underline{\sf{2}}&\underline{\sf{\:\:72\:\:}}\\\underline{\sf{2}}&\underline{\sf{\:\:36\:\:}}\\\underline{\sf{2}}&\underline{\sf{\:\:18\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

 \purple{\bf :\longmapsto\:Prime \:  Factorization \: of \: 576 =  {2}^{6}  \times  {3}^{2} }

Consider,

 \purple{\bf :\longmapsto\:Prime \:  Factorization \: of \: 1080}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:1080 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:540 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:270\:\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:135\:\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:45\:\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:15\:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5 \:\:}} \\  \underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

 \purple{\bf :\longmapsto\:Prime \:  Factorization \: of \:1080 =  {2}^{3}  \times  {3}^{3}  \times 5}

Thus,

We have now,

 \purple{\sf :\longmapsto\:Prime \:  Factorization \: of \: 324 =  {2}^{2}  \times  {3}^{4} }

 \purple{\sf :\longmapsto\:Prime \:  Factorization \: of \: 576 =  {2}^{6}  \times  {3}^{2} }

 \purple{\sf :\longmapsto\:Prime \:  Factorization \: of \:1080 =  {2}^{3}  \times  {3}^{3}  \times 5}

\bf\implies \:HCF (324, 576, 1080) =  {2}^{2} \times  {3}^{2} = 36

Additional Information :-

Let a and b are two natural numbers then

  • 1. HCF(a, b) × LCM(a, b) = a × b

  • 2. HCF always divides a, b and LCM

  • 3. LCM is always divisible by HCF
Similar questions