Physics, asked by badboys82, 1 year ago

What is Hexagonal law of vector addition??

Answers

Answered by yourshivank
0

Answer:

Since the hexagon is a regular Hexagon, the Resultant of the given vectors will be zero, as per the polygon law of vector addition, if they are arranged in a head to tail formation in any closed polygon. Since the head of the last vector is joined with the tail of the first vector, their Resultant is zero..

Hope it helps You

Explanation:

Answered by Anonymous
74

Answer:

"According to law of hexagonal, if sides of hexagonal represents the magnitude of vectors then closing side of hexagon represent the resultant".

So,

\sf{In\: \triangle\: OAB}

\sf{\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}\:\:\:\:.....[From\: Triangles\: law\: of\: vector\: addition]}

\sf{\overrightarrow{OB}=\overrightarrow{P}+\overrightarrow{Q}\:\:\:\:......(1)}

Similarly,

\sf{In\: \triangle\: OBC}

\sf{\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{BC}}

\sf{\overrightarrow{OC}=(\overrightarrow{P}+\overrightarrow{Q})+\overrightarrow{R}\:\:\:\:.....(2)}

\sf{In\: \triangle\: OCD}

\sf{\overrightarrow{OD}=\overrightarrow{OC}+\overrightarrow{CD}}

\sf{\overrightarrow{OD}=(\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R})+\overrightarrow{S}\:\:\:\:.....(3)}

\sf{In\: \triangle\: OED}

\sf{\overrightarrow{OE}=\overrightarrow{OD}+\overrightarrow{DE}}

\sf{\overrightarrow{OE}=(\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}+\overrightarrow{S})+\overrightarrow{T}\:\:\:\:.....(4)}

\sf{So,\: \overrightarrow{OE}\: represents\: the\: resultant.}

{\boxed{\boxed{\sf{\overrightarrow{OE}=\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}+\overrightarrow{S}+\overrightarrow{T}}}}}

Attachments:
Similar questions