Science, asked by Musiclover001, 5 months ago

What is Semi permeable ? ​

Answers

Answered by Anonymous
4

\huge{\underline{\underline{\mathfrak\blue{hello}}}}

a material or membrane allowing certain substances to pass through it but not others, especially allowing the passage of a solvent but not of certain solutes.

Answered by MrInvisible18
12

Answer:

Semipermeable Membrane Definition

A semipermeable membrane is a layer that only certain molecules can pass through. Semipermeable membranes can be both biological and artificial. Artificial semipermeable membranes include a variety of material designed for the purposes of filtration, such as those used in reverse osmosis, which only allow water to pass. The biological membranes of cells are created by two sheets of phospholipid, which contain a lipid tail attached to a polar head. The tail regions of each sheet cluster together, while the heads of the molecules point outward. The polar heads point both outward toward the environment of the cell and inward toward the cytosol. In this way, a hydrophobic region of lipid tails separates the two bodies of solution. 

While water and other small molecules can slip through the gaps between the phospholipid molecules, other molecules like ions and large nutrients cannot force their way into or out of the cell. This makes the phospholipid bilayer an excellent semipermeable membrane that allows cells to keep their contents separated from the environment and other cells. The concentration of the solution bound by a semipermeable membrane can be described by its tonicity as compared to the environment or other cells. Because biological membranes are permeable to water but not solutes, water tends to move into cells that are hypertonic to their environment, while water moves out of cells that are hypotonic.

The membranes of most cells also contain a variety of transport proteins, which facilitate the movement of large molecules and ions across the cell membrane. Some of these proteins require energy to move across the membrane, a form of active transport, while other flow freely once a protein pore is opened across the membrane. This is called passive transport. With these specialized proteins, the cell membrane becomes a selectively permeable membrane, as the genetics of the cell decide which molecules can pass the membrane. Semipermeable membranes evolved in this way over time to allow and restrict a wide variety of molecules, which in a large sense accounts for the various functions of cells in different organisms and tissues.

Examples of Semipermeable Membrane

Artificial Membranes and Tonicity

Artificial membranes have been used in the laboratory to show the basics of the effects of osmolarity on cells. Much like cell membranes, a semipermeable membrane created artificially will only let water pass, while restricting the solutes dissolved in the solution. If two solution are connected through a semipermeable membrane, water will flow between them, but the solutes will be restricted to the side of the membrane they started on.

The left side of the image shows the initial set up. The semipermeable membrane is marked, and separates two solutions placed in a U-shaped tube. The right side of the tube contains less solutes than the right side and is considered hypotonic to the hypertonic right. As the experiment proceeds, the semipermeable membrane will allow water, but not solutes to pass through the membrane. In a sense, the water between the two solutions is connected, and prefers the solutes to be distributed equally. Typically, the solutes would be diffused evenly throughout the water, but the semipermeable membrane prevents this. Instead, the water must be the molecule to move through the membrane. To balance the concentrations of the two solutions, water moves out of the right side of the tube and into the left side. This change in volume can be seen in the right side of the image. Although the volumes of the solutions have changed, the semipermeable membrane has still allowed for equalization of the concentrations. The solutions are now isotonic.

Similar questions