Math, asked by Binoyvembayam1276, 1 year ago

What is the 20th term of the sequence defined by an=(n-1)(2-n)(3+n)?

Answers

Answered by astha2109
30
an=(n-1)(2-n)(3+n)
a20=(20-1)(2-20)(3+20)
a20=(19)(-18)(23)
a20= -7866.
Answered by SparklingThunder
77

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

What is the 20th term of the sequence defined by  \sf a_n = (n − 1) (2 - n) (3 + n) ?

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • The 20th term of the sequence is -7866 .

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  •  \sf a_n = (n − 1) (2 - n) (3 + n)

\green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • 20th term of the sequence .

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

To get 20th term of the sequence , we put n = 20 in  \sf a_n = (n − 1) (2 - n) (3 + n)

 \displaystyle \longrightarrow\sf a_{20} = (20 − 1) (2 - 20) (3 + 20) \:  \\  \\  \displaystyle \longrightarrow\sf a_{20} =(19)( - 18)(23) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \longrightarrow\sf a_{20} = - 342 \times 23 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \displaystyle \longrightarrow\sf a_{20} = - 7866 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple {\boxed{  \begin{array}{l}\textsf{The 20th term of the sequence is -7866 .}\end{array}}}

Similar questions