What is the (a) momentum, (b) speed, and (c) de Broglie wavelength of an electron with kinetic energy of 120 eV.
Answers
Given condition,
Kinetic energy of the Electron = 120 eV.
= 120 × 1.6 × 10⁻¹⁹ J.
= 192 × 10⁻¹⁹ J
We know mass of the Electron = 9.1 × 10⁻³¹ kg.
Now,
(a). For Momentum,
We know,
p² = 2K.E.× m
p ² = 2 × 192 × 10⁻¹⁹ × 9.1 × 10⁻³¹
⇒ p² = 3494.4 × 10⁻⁵⁰
⇒ p = 59.11 × 10⁻²⁵ N-s.
(b). For Speed,
K.E. = 1/2 × mv²
v² = 2 K.E./m
⇒ v² = 2 × 192 × 10⁻¹⁹/9.1 × 10⁻³¹
⇒ v² = 42.2 × 10¹²
⇒ v = 6.5 × 10⁶ m/s.
(c). For De-Broglie Wavelength,
λ = h/mv
∴ λ = 6.62 × 10⁻³⁴/(9.1 × 10⁻³¹ × 6.5 × 10⁶)
⇒ λ = 0.119 × 10⁻⁹
∴ λ = 1.19 × 10⁻¹⁰ m.
Hope it helps.
Given :
Kinetic energy =KE= 120ev=120x 1.6x 10⁻¹⁹J
a) momentum = p =√2meV=√2mk.e [ since K.E=1/2mv2= ev]
where mass of electron is 9.1 x 10⁻³¹kg
=√2x9.1x10⁻³¹x⁻³¹
=5.91x 10⁻²⁴ kg-m/s
b) Momentum=p=mv
v=p/m
=5.91x 10⁻²⁴ /9.1 x 10⁻³¹
=6.5 x 10⁶ m/s
c) De brogile wave length =λ=12.27/√v A°
=12.27/√120 A°
=0.112 x 10⁻⁹=0.112nm