Physics, asked by aqsiddiqui778, 3 months ago

What is the angle that the given vector makes with y-axis? Ā=2i + √12j​

Answers

Answered by assingh
44

Topic :-

Vectors

Given :-

\overrightarrow{A}=2\:\hat{i}+\sqrt{12}\:\hat{j}

To Find :-

Angle that given vector makes with y-axis.

Concept Used :-

\overrightarrow{A}=A_x\:\hat{i}+A_y\:\hat{j}

A_x=x-component\:of\:\overrightarrow{A}

A_y=y-component\:of\:\overrightarrow{A}

If \:\theta\:is\:angle\:made\:by\:\overrightarrow{A}\:with\:x-axis\:then:

tan\theta=\dfrac{y-component\:of\:\overrightarrow{A}}{x-component\:of\:\overrightarrow{A}}=\dfrac{A_y}{A_x}

Solution :-

Finding components in given vector,

On\:comparing\:given\:vector\:with\:\overrightarrow{A}=A_x\:\hat{i}+A_y\:\hat{j},we\:get,

y-component\:of\:vector=A_y= \sqrt{12}

x-component\:of\:vector=A_x= 2

Applying formula,

tan\theta=\dfrac{\sqrt{12}}{2}

tan\theta=\dfrac{2\sqrt{3}}{2}

tan\theta=\dfrac{\not{2}\sqrt{3}}{\not{2}}=\sqrt{3}

tan\theta=tan\:60^{\circ}

\theta = 60^{\circ}

Calculating angle from y-axis,

Angle\:from\:y-axis=90^{\circ}-\theta

(It is so because angles formed by a vector from 'x' and 'y' axis are complementary angles.)

\because \theta = 60^{\circ}

Angle\:from\:y-axis=90^{\circ}-60^{\circ}

Angle\:from\:y-axis=30^{\circ}

Answer :-

The given vector makes \bold {30^{\circ}} with y-axis.

Answered by BrainlyUnnati
9

QuestioN :

What is the angle that the given vector makes with y-axis? Ā=2i + √12j

GiveN :

  • Ā=2i + √12j

To FiNd :

  • The angle between A and y-axis

ANswer :

The angle between A and y-axis is 30°.

SolutioN :

\sf tan0 = \frac{\sqrt{12} }{2}

\sf tan0 = \frac{2\:\sqrt{3} }{2}

\sf tan0= \sqrt{3}

\sf tan0 = tan60

\sf 0 = 60

\sf Angle\: Y = 90

\sf By\: using\: formula=90-60

\sf Y-axis = 30

Similar questions