Math, asked by ranveerpandey, 8 months ago

what is the answer ​

Attachments:

Answers

Answered by souravsarkar045
1

Answer:

Here is the answer.

Step-by-step explanation:

Given,

sin\theta =  \frac{5}{13}  \\ we \: know \\ cos\theta =  \sqrt{1 -  {sin}^{2}\theta }  \\  =  > cos\theta =  \sqrt{1 -  {( \frac{5}{13}) }^{2} }  \\  =  > cos\theta =  \sqrt{1 -  \frac{25}{169} }  \\  =  > cos\theta =  \sqrt{ \frac{169 - 25}{169} }  \\  =  > cos\theta =  \sqrt{ \frac{144}{169} }  \\  =  > cos\theta =  \frac{12}{13}  \\  \\ \therefore \: tan\theta +  \frac{1}{cos\theta} \\  =  \frac{sin\theta}{cos\theta} +  \frac{1}{cos\theta}  \\  =  \frac{( \frac{5}{13}) }{( \frac{12}{13} )}  +  \frac{1}{( \frac{12}{13}) }  \\  =  \frac{5}{13}  \times  \frac{13}{12}  +  \frac{13}{12}  \\  =    \frac{5}{12}  +  \frac{13}{12}  \\  =  \frac{5 + 13}{12}  \\  =  \frac{18}{12}  \\ =   \frac{3}{2}

Similar questions