Math, asked by jswlpnshi114, 8 months ago

What is the answer of
sinθ/(1-cosθ)=

Answers

Answered by jivananandapadhi
0

Step-by-step explanation:

this is the way to solve this question

Attachments:
Answered by MohakBiswas
3

Question :-

What is the value of  \frac{sinθ}{(1-cosθ)}

Solution :-

Formulae used :-

  •  1 -   { \cos}^{2}  \theta   =   { \sin}^{2}  \theta
  •  \frac{1}{ \sin \theta}  =  \cosec \theta
  •  \frac{ \cos \theta}{ \sin \theta}  =  \cot \theta

To solve :-

 \frac{ \sin \theta}{1 -  \cos \theta}

Now multiplying both numerator and denominator by (1 + cosθ) we get,

 =   \frac{\sin\theta \times (1 + \:   \cos \theta)}{(1 -  \cos \theta)(1 +  \cos \theta)}

  =  \frac{\sin\theta \times (1 + \:   \cos \theta)}{ 1 -  \cos ^{2}  \theta }

 =   \frac{\sin \theta(1 +  \cos \theta)}{  { \sin}^{2}  \theta}

  = \frac{1 +  \cos \theta }{ \sin \theta}

 =  \frac{1}{ \sin \theta}  +  \frac{ \cos \theta}{ \sin \theta}

 =  \cosec \theta +  \cot \theta

____________________________________________________

\bf\large\blue{Hope \: it \: helps \: you \:.}

\star\star\star\star\star

Similar questions