Math, asked by monikkagupta, 4 months ago

what is the answer pls tell I need it fast ​

Attachments:

TheLostMonk: ridiculous
monikkagupta: thankyou

Answers

Answered by yobrogaurav
2

Answer:

x  + 1/x  = 4

x³ + 1/x³  = 52

x⁶ + 1/x⁶ = 2702

Step-by-step explanation:

x = 1/(4 -x)

=> x (4 -x) = 1

=> 4x - x² = 1

=> x² - 4x + 1 = 0

=> x² + 1 = 4x

Dividing by x both sides

=> x + 1/x = 4

or solving Quadratic equation

x² - 4x + 1 = 0

=> x = (4 ± √16 - 4 )/2

= (4 ± 2√3)/2

= 2 ± √3

case 1  x  = 2 + √3

x + 1/x

= 2 + √3  +  1/(2 + √3)

Multiplying & dividing last term by 2 - √3

= 2 + √3    + (2 - √3)/(4 -3)

= 2 + √3 + 2  - √3

= 4

Case 2 x  = 2 - √3

x + 1/x

= 2 - √3  +  1/(2 - √3)

Multiplying & dividing last term by 2 + √3

= 2 - √3    + (2 + √3)/(4 -3)

= 2 - √3 + 2  + √3

= 4

x  + 1/x  = 4

x³ + 1/x³ = (x + 1/x)³ - 3x(1/x)(x + 1/x)

= 4³ - 3 * 4

= 64 - 12

= 52

x²+ 1/x² = (x + 1/x)² - 2x(1/x)

=> x²+ 1/x² = 4² - 2

=> x²+ 1/x² = 14

Cubing both sides

x⁶ + 1/x⁶ + 3x²(1/x²)(x²+ 1/x²) = 14³

=> x⁶ + 1/x⁶ + 3(14) = 2744

=> x⁶ + 1/x⁶ = 2702

Answered by TheLostMonk
1

4,52,2702

Step-by-step explanation:

V. Good Question!

(i). x=1/(4 -x) => (4-x) = 1/x

=>(x + 1/x) = 4

(ii) x3 + 1/x3) = (x + 1/x)^3 - 3x(1/x)(x + 1/x)

= (4)^3 - 3(4) = 52

(iii) x^6 + 1/x^6 = (x^3+1/x^3)(x3+1/x^3) - 2

= 52×52 - 2 = 2702

comment if any doubt.

Note : (x^3+ 1/x^3)(x^3+ 1/x^3) - 2

= x^6 + 1 + 1 + 1/x^6-2=x^6 + 1/x^6

Similar questions