Math, asked by maureenfalke40, 10 months ago

What is the area of a semicircle having perimeter 90 cm?
1) 481.25 cm
(2) 962.5 cm
(3) 1925 cm
(4) 240.63 cm
plzz answer fast with explanation​

Answers

Answered by ganesh201pandey
0

Step-by-step explanation:

perimeter of semicircle =2pi r

90 /2pi. = r

315/22. =r

area of smicircle. =pi r^2/2

=pi ×315/22 ×315/22/2

Answered by amankumaraman11
0

We know,

\boxed{ \large{ \bf{Area  \:  \: of \:  \:  semicircle} =  \frac{\pi {r}^{2} }{2}}}

But,

 \tt{Perimeter \:  \: of     \:  \:  semicircle = \pi r } \\  \\ \frak{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  > \pi r = 90 \: cm} \\   \frak{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  >  \:  \:  \: r =  \frac{90 \times 7}{22}  =  \frac{315}{11}  \: cm}

Hence,

 \large{\bf{Area  \:  \: of  \:  \: this \:  \:  semicircle}}  \\ \\  \implies  \frac{1}{ \cancel2}  \times  \frac{ \cancel{22}}{7}  \times  { \bigg( \frac{315}{11}  \bigg)}^{ \large2}  \\  \\  \implies  \frac{ \cancel{11}}{7}  \times  \frac{99225}{11 \times \cancel{ 11}}  \\  \\  \implies  \frac{99225}{77}  = \red {1288}.  \red{63} \sf \:  {cm}^{2}

Similar questions