Math, asked by khileshmandavi0004, 11 months ago

what is the area of a semicircle whose dia is 20 cm (d)

Answers

Answered by MaheswariS
9

\underline{\textsf{Given:}}

\textsf{Diameter of semi circle is 20 cm}

\underline{\textsf{To find:}}

\textsf{Area of the semi circle}

\underline{\textsf{Solution:}}

\mathsf{Diameter=20\;cm}

\mathsf{Radius\;of\;the\;semi\;circle,\,r=\dfrac{Diameter}{2}}

\mathsf{=\dfrac{20}{2}}

\mathsf{=10\;cm}

\mathsf{Now,}

\mathsf{Area\;of\;the\;semi\;circle}

\mathsf{=\dfrac{\pi\,r^2}{2}}

\mathsf{=\dfrac{3.14{\times}10{\times}10}{2}}

\mathsf{=3.14{\times}10{\times}5}

\mathsf{=31.4{\times}5}

\mathsf{=157\;square\;cm}

\underline{\textsf{Answer:}}

\textsf{Area of the semi circle is 157 square cm}

\underline{\textsf{Find more:}}

The radius of a circle is 8cm determine the radius of another circle whose area is 16times more than the first circle​

https://brainly.in/question/16983428

Answered by DevyaniKhushi
5

Given,

  • Diameter of semicircle = 20 cm
  • Radius of semicircle = 20/2 cm

We know,

 \text{Area of semicircle} =  \frac{ \text{Area of circle}}{2}  \\  \\  =  >  \text{Area of semicircle}  = \green{ \frac{\pi {r}^2}{2} }

Here,

 \text{Area of semicircle} =  \frac{\pi \times  {\big(\frac{20}{2}\big) }^2}{2} \\  \\  =  >  \frac{\pi  \times {(10)}^2}{2}= \frac{3.14 \times 100 }{2} \:  \:  \:  \:  \:  \{ \text{using \:}{ \pi }{ = 3.14\:  \: } \}\\   =  > (3.14 \times 50) \:  \: \rm  {cm}^{2} \\ => 157 \: \: \text{cm² }

Thus,

  • A semicircle whose diameter is 20 cm will have area of 157 cm²
Similar questions