Math, asked by sheetalspatil22, 11 months ago

What is the area of the triangle whose sides are 20, 30,40 without using herons formula

Answers

Answered by bagwanaran
0

Answer:

300 unit square

Step-by-step explanation:

though Herons Formula Is The Easiest Way .You Can Find The Answer By Area's Formula

1/2*30*20=300 unit square

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=290.47\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 20 cm,30 cm,40 cm} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{20+ 30+ 40}{2}  \\  \\  : \implies s =  \frac{90}{2}  \\  \\  \green{ : \implies s = 45} \\  \\   \circ\:  \bold{Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{45(45- 20)(45-30)(45- 40)}  \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{45 \times 25\times 15\times 5}   \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{84375}   \\  \\  :  \implies \text{Area \: of \: triangle =}290.47 \: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 290.47 {cm}}^{2} }

Similar questions