what is the argument of (1-sin theta)+icos theta
Answers
Argument = π/4 + θ/2
Step-by-step explanation:
Z = (1 - Sinθ) + i Cosθ
argument θ
Tanθ = Cosθ/(1 - Sinθ)
Using Cos2x = Cos²x - Sin²x
& Cos²x + Sin²x = 1
& Sin2x = 2SinxCosx
=> Tanθ = (Cos²(θ/2) - Sin²(θ/2))/( Cos²(θ/2) +Sin²(θ/2) - 2Sin(θ/2)Cos(θ/2)
Using a² - b² = (a + b)(a - b)
=> Tanθ = ((Cos(θ/2) + Sin(θ/2) (Cos(θ/2) - Sin(θ/2))/(Cos(θ/2) - Sin(θ/2)²
=> Tanθ = (Cos(θ/2) + Sin(θ/2))/(Cos(θ/2) - Sin(θ/2)
=> Tanθ = ( 1 + Tan(θ/2))/( 1 - Tan(θ/2))
Using Tan(π/4) = 1
=> Tanθ = ( Tan(π/4) + Tan(θ/2))/( 1 - Tan(π/4)Tan(θ/2))
Using Tan(A + B) = (TanA + TanB)/(1 - TanATanB)
=> Tanθ = Tan(π/4 + θ/2)
=> θ = π/4 + θ/2
Argument = π/4 + θ/2
Learn more:
find the Modulus and argument 1+i tan alpha - Brainly.in
https://brainly.in/question/10460084
Find the modulus and argument of the complex number z= -1 - i√3 ...
https://brainly.in/question/8543327