what is the condition that the equation (m^2+n^2)x^2-2(mp+nq)x + p^2+q^2=0 has equal roots
Answers
Answer:
m/n = p/q
Step-by-step explanation:
What is the condition that the equation (m^2+n^2)x^2-2(mp+nq)x + p^2+q^2=0 has equal roots
(m² + n²)x² - 2(mp + nq)x + (p² + q²) = 0
for ax² + bx + c = 0
To have equal roots
b² = 4ac
here a = m² + n² , b = - 2(mp + nq) c = p² + q²
=> ( - 2(mp + nq))² = 4 (m² + n²)(p² + q²)
=> 4 (m²p² + n²q² + 2mpnq) = 4(m²p² + n²q² + m²q² + n²p²)
Cancelling 4 from both sides
=> m²p² + n²q² + 2mpnq = m²p² + n²q² + m²q² + n²p²
=> m²q² + n²p² - 2mpnq = 0
=> (mq - np)² = 0
=> mq = np
=> m/n = p/q
Answer:
m / n = p / q
Step-by-step explanation:
Given :
p ( x ) = ( m² + n² ) x² - 2 ( m p + n q ) x + p² + q² = 0
We know for equal and real root :
D = 0
i.e. b² - 4 a c = 0
( - 2 ( m p + n q ) )² - 4 ( m² + n² ) ( p² + q² ) = 0
4 ( ( m p + n q ) )² - 4 ( m² + n² ) ( p² + q² ) = 0
4 [ ( m p + n q )² - ( m² + n² ) ( p² + q² ) ] = 0-
( m p + n q )² - ( m² + n² ) ( p² + q² ) = 0
m² p² + n² q² + 2 m p n q - m² p² - m² q² - n² p² - n² q² = 0
2 m p n q - m² q² - n² p² = 0
m² q² + n² p² - 2 m q n p = 0
( m q - n p )² = 0
m q - n p = 0
= > m q = n p
= > m / n = p / q