what is the conditions for roots in quadratic equations?
Answers
Answered by
0
Answer:
When a, b, and c are real numbers, a ≠ 0 and the discriminant is positive, then the roots α and β of the quadratic equation ax2 +bx+ c = 0 are real and unequal. When a, b, and c are real numbers, a ≠ 0 and the discriminant is zero, then the roots α and β of the quadratic equation ax2+ bx + c = 0 are real and equal.
Answered by
0
When a, b, and c are real numbers, a ≠ 0 and the discriminant is positive, then the roots α and β of the quadratic equation ax2 +bx+ c = 0 are real and unequal. When a, b, and c are real numbers, a ≠ 0 and the discriminant is zero, then the roots α and β of the quadratic equation ax2+ bx + c = 0 are real and equal.
Similar questions