Math, asked by ajaychavan995, 3 months ago


what is the difference between amounts for 2 years and 3 years for rs. 500 at 10% compound interest ?

Answers

Answered by bannybannyavvari
1

Answer:

Answer Expert Verified · rate = 10% · principal = ₹500 · time = 2 years.

Answered by BrainlyHoney
8

Formula to be used

\purple\odot  \red {A = P (1 + \frac{R}{100})^{n}}

\purple\odot  \red {CI = P (1 + \frac{R}{100})^{n}-P}

══════════════════════════

Given,

\sf \pink{Principle = ₹500}

 \sf\pink{ Rate\: of\: interest = 10 \%}

 \sf\pink{ Time_1 = 2 \: years}

 \sf\pink{ Time_2 = 3 \: years}

\large\underline\purple {1st \: Amount = P (1 + \frac{R}{100})^{n}}

 \implies \tt₹500(1 +  \frac{10}{100} ) ^{2}  \\  \\  \implies \tt \: ₹500( \frac{100 + 10}{100} )^{2}  \\  \\  \implies \tt \: ₹500( \frac{110}{100} ) ^{2}  \\  \\  \implies \tt \: 5 \cancel{00} \times  \frac{11 \cancel0}{1 \cancel0 \cancel0}  \times  \frac{11 \cancel0}{1 \cancel{00}}  \\  \\  \implies \tt \: 5 \times 11 \times 11 \\  \\  \therefore \tt \: ₹605

\large\underline\purple {2nd \: Amount = P (1 + \frac{R}{100})^{n}}

 \implies  \:₹500(1 +  \frac{10}{100} )^{3}   \\  \\   \implies \: ₹500( \frac{100 + 10}{100} ) ^{3}  \\  \\  \implies \: ₹500( \frac{110}{100} ) ^{3}  \\  \\  \implies \: ₹5 \cancel{00} \times  \frac{11 \cancel0}{1 \cancel{00} } \times  \frac{11 \cancel0}{10 \cancel0}  \times  \frac{11 \cancel0}{1 \cancel0 \cancel0}  \\  \\  \implies \frac{\: 5 \times 11 \times 11 \times 11 }{10}  \\  \\  \implies \:  \frac{6655}{10}  \\  \\  \therefore \: ₹665.5

Difference = 2nd (A) - 1st (A)

₹ 665.50 - ₹605

 \therefore ₹ 60.5[Ans]

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large \fbox \purple{Hope \: it \: helps \: you}

Similar questions