English, asked by gauraji73, 2 months ago

what is the difference between simple interest and compound interest for 2 years at the rate of 5% and rupees 1000​

Answers

Answered by SachinGupta01
7

Given :

 \sf \: Principal \:  =  \: Rs. \:  1 000

 \sf \: Time  \: :  \: 2  \: years

 \sf \: Rate  \: of  \: Interest  \: : 5 \:  \%

To find :

We have to find the difference between simple interest and compound interest.

So, Let's find it :

 \sf \:So,\: first\: of \:all \:We \:will\: found\: the \:Compound \:Interest.

 \sf \: Formula \:  to \:  find \:  Amount  \: is   \: :

 \sf \:  \red{Amount }\:   = \:   \blue{Principal  \ \bigg[ 1 \:  +  \:  \dfrac{Rate}{100}   \bigg]   ^{Time} }

 \sf \:  Amount \:   = \:   1000  \ \bigg[ 1 \:  +  \:  \dfrac{5}{100}   \bigg]   ^{2}

 \sf \:  Amount \:   = \:   1000  \ \bigg[ 1 \:  +  \:  \dfrac{1}{20}   \bigg]   ^{2}

 \sf \: Amount \:   = \:   1000  \ \bigg[ \:  \dfrac{20 \:  + 1}{20}   \bigg]   ^{2}

 \sf \:  Amount \:   = \:   1000  \ \bigg[ \:  \dfrac{21}{20}   \bigg]   ^{2}

 \sf \:  Amount \:   = \:   1000  \  \:  \times  \:  \dfrac{21}{20} \:  \times  \:  \dfrac{21}{20}

 \sf \:  Amount \longrightarrow \:   1000   \:  \times  \:  \dfrac{21}{20} \:  \times  \:  \dfrac{21}{20}   \:  =  \: 1102.5

 \bf \: So,  \: Amount  \: =  \: Rs. \:  1102.5

 \boxed{ \sf \: C.l = Amount - Principal }

 \sf \: C.I  \: \longrightarrow \:  1102.5 \:  -  \: 1000 \:  =  \: Rs. \:   102.5

 \sf\: \underline{Now  \: We \:  will \:  find \: the\: SI.}

 \sf \: Formula \:  used \:  to \:  find \:  S I  :

 \sf \:  \red{Simple \:  Interest} =   \blue{\dfrac{\: P \:   \times R  \times \: T   }{100} }

 \sf \: Simple \:  Interest :   \dfrac{\: 1000 \:   \times 5 \times \: 2   }{100}

 \sf \: Simple \:  Interest :    Rs.\: 100

  \sf \: So,  \: Difference  \: between  \: CI  \: and \:  SI  \: = \:  102.5 \:  - \:  100

 \bf \: 102.5 \:  - \:  100  \:  =  \: 2.5

\sf \purple{ \sf \: So,  \: Difference  \: between \:  them  \: is  \: Rs.  \: 2.5}

Similar questions