What is the Dimesion Of electric field
Answers
Answer:
The SI unit of electric field strength is newtons per coulomb (N/C) or volts per meter (V/m). The force experienced by a very small test charge q placed in a field E in a vacuum is given by E = F/q, where F is the force experienced. =M^1.L^1.
Answer:
Electric field, an electric property associated with each point in space when charge is present in any form. The magnitude and direction of the electric field are expressed by the value of E, called electric field strength or electric field intensity or simply the electric field. Knowledge of the value of the electric field at a point, without any specific knowledge of what produced the field, is all that is needed to determine what will happen to electric charges close to that particular point.
When white light is spread apart by a prism or a diffraction grating, the colours of the visible spectrum appear. The colours vary according to their wavelengths. Violet has the highest frequencies and shortest wavelengths, and red has the lowest frequencies and the longest wavelengths.
READ MORE ON THIS TOPIC
light: Electric and magnetic fields
The subjects of electricity and magnetism were well developed by the time Maxwell began his synthesizing…
Instead of considering the electric force as a direct interaction of two electric charges at a distance from each other, one charge is considered the source of an electric field that extends outward into the surrounding space, and the force exerted on a second charge in this space is considered as a direct interaction between the electric field and the second charge. The strength of an electric field E at any point may be defined as the electric, or Coulomb, force F exerted per unit positive electric charge q at that point, or simply E = F/q. If the second, or test, charge is twice as great, the resultant force is doubled; but their quotient, the measure of the electric field E, remains the same at any given point. The strength of the electric field depends on the source charge, not on the test charge. Strictly speaking, the introduction of a small test charge, which itself has an electric field, slightly modifies the existing field. The electric field may be thought of as the force per unit positive charge that would be exerted before the field is disturbed by the presence of the test charge.