Math, asked by ujjawal8753, 1 year ago

What is the distance between (–3,1) and (2,4) on the coordinate plane?

Answers

Answered by 24daksh
0

try this formula distance =

 \sqrt{(x2 - x1}  +  \sqrt{(y2 - y1)}

Answered by charliejaguars2002
1

Answer:

\Large\boxed{\mathsf{\sqrt{34}}}}

Step-by-step explanation:

TO FIND:

The distance between (-3, 1) and (2, 4) on the coordinate plane.

DISTANCE FORMULA:

\displaystyle \mathsf{\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2}}}}

SOLUTIONS:

Distance between the (-3, 1) and (2, 4).

\displaystyle \mathsf{\sqrt{(2-(-3))^2+(4-1)^2}}

\displaystyle \mathsf{\sqrt{\left(2+3\right)^2+\left(4-1\right)^2}}}}

Add.

\displaystyle \mathsf{2+3=5}

\displaystyle \mathsf{\sqrt{5^2+(4-1)^2}}

Subtract.

\displaystyle \mathsf{4-1=3}

\displaystyle \mathsf{\sqrt{5^2+3^2}}}}

Solve by exponent.

\displaystyle \mathsf{5^2=5\times5=25}

\displaystyle \mathsf{\sqrt{25+3^2}}}}

\displaystyle \mathsf{3^2=3\times3=9}

\displaystyle \mathsf{\sqrt{25+9}}

Add.

\displaystyle \mathsf{25+9=\boxed{\mathsf{34}}}}

\Large\boxed{\mathsf{\Rightarrow \sqrt{34}}}}}

The distance between of (-3,1) and (2,4) is 34.

Similar questions