Math, asked by ashray321sarkar, 8 months ago

What is the distance of the point (4, -3) from x-axis?

Answers

Answered by ItzAditt007
3

AnswEr:-

Your Answer Is 3 units.

(As distance cant be negative).

\setlength{\unitlength}{20} \begin{picture}(0,0)  \put(7.5,4){ \vector(1,0){5}}  \put(7.5,4){ \vector( - 1,0){5}}  \put(7.5,4){ \vector(0,1){5}} \put(7.5,4){ \vector(0, - 1){5}} \put(7.25,3.5){ \line(1,0){0.5}}\put(7.25,3){ \line(1,0){0.5}}\put(7.25,2.5){ \line(1,0){0.5}}\put(7.25,2){ \line(1,0){0.5}}\put(7.25,1.5){ \line(1,0){0.5}}\put(7.25,1){ \line(1,0){0.5}}\put(7.25,0.5){ \line(1,0){0.5}}\put(7.25, - 0){ \line(1,0){0.5}}\put(7.25,4.5){ \line(1,0){0.5}}\put(7.25,5){ \line(1,0){0.5}}\put(7.25,5.5){ \line(1,0){0.5}}\put(7.25,6){ \line(1,0){0.5}}\put(7.25,6.5){ \line(1,0){0.5}}\put(7.25,7){ \line(1,0){0.5}}\put(7.25,7.5){ \line(1,0){0.5}}\put(8,3.75){ \line(0,1){0.5}}\put(8.5,3.75){ \line(0,1){0.5}}\put(9,3.75){ \line(0,1){0.5}}\put(9.5,3.75){ \line(0,1){0.5}}\put(10,3.75){ \line(0,1){0.5}}\put(10.5,3.75){ \line(0,1){0.5}}\put(11,3.75){ \line(0,1){0.5}}\put(11.5,3.75){ \line(0,1){0.5}}\put(7,3.75){ \line(0,1){0.5}}\put(6.5,3.75){ \line(0,1){0.5}}\put(6,3.75){ \line(0,1){0.5}}\put(5.5,3.75){ \line(0,1){0.5}}\put(5,3.75){ \line(0,1){0.5}}\put(4.5,3.75){ \line(0,1){0.5}}\put(4,3.75){ \line(0,1){0.5}}\put(3.5,3.75){ \line(0,1){0.5}}\put(10,2.5){ \line(0,1){1.5}}\put(7.5,2.5){ \line(1,0){2.5}} \put(10.2, 2.5){\circle*{0.2}}\put(12, 3.5){ $ \tt x $}\put(8, 8.5){ $ \tt y $}\put(2.5, 3.5){ $ \tt {x}^{'} $}\put(8,  - 1){ $ \tt  {y}^{'}  $}\put(10,  4.5){ $ \tt  A $}\put(10,  2){ $ \tt B  $}\put(10.5,  2){ $ \tt  (4, - 3) $}\put(6.25,  - 2){ $ \tt AB = 3 \:  units $ }\end{picture}

More Related Information:-

  • The distance of a point from x axis is indicated by y - coordinate.

  • The distance of a point from y axis is indicated by x - coordinate.

For Example:-

• We have a point A(x, y).

• So the distance of A from x - axis = y units, and the distance of A from y - axis = x.

  • In coordinate geometry x - axus is also known by the name of Abscissa and y axis is also known as the ordinate.
Answered by hritiksingh1
15

Step-by-step explanation:

The shortest distance between the coordinate and the x-axis is (4,0)

➛ Here we use distance formula to finding the distance.

  \sqrt{ {(x2 - x1) + (y2 - y1)}^{2} }

 \sqrt{ {(4 - 4) } ^{2} +  {0 - ( - 3)}^{2}  }

 \sqrt{0 + 9}  = 3 \:  \:

here is your answer

hope it helps you..!!

━━━━━━ • ✿ • ━━━━━━

Similar questions