Math, asked by haidaralimasu123, 5 months ago

What is the domain of (fog)(x) if
f(x)=1/x+2 and
g(x)=4/x​

Answers

Answered by MrBasic
1

Assuming that

1/x + 2 =  \frac{1}{x + 2}  \: not \:  \frac{1}{x}  + 2

Given,

f(x) =  \frac{1}{x + 2}

g(x) =  \frac{4}{x}

Then

(f \circ g)(x) = f(g(x))

 = f( \frac{4}{x} )

 =  \frac{1}{ \frac{4}{x} + 2 }

=  \frac{1}{ \frac{4 + 2x}{x} }

=   \frac{x}{4 + 2x}

Here,

(f \circ g)(x)  =  \frac{x}{2x + 4}

is only defined when

2x + 4\neq 0

\implies 2x\neq  - 4

\implies x\neq  - 2

Therefore domain of (f o g)(x),

D_{f\circ g} = \mathbb{R} - \{ - 2\}

 = ( - \infty, - 2)\cup( -  2, \infty)

Similar questions