Math, asked by Anonymous, 1 month ago

What is the domain of the function :-
f(x) =  \dfrac{1}{ \sqrt{x -  |x| } }
Is it { } phi ?​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{1}{ \sqrt{x - |x| } }

We know,

Domain is defined as the set of those values of x for which f(x) is well defined.

Now, we know,

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  |x| = \begin{cases} &\sf{ - x \:  \: when \: x \:  <  \: 0} \\ &\sf{ \:  \:  \: x \:  \: when \: x \:   \geqslant   \: 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:   - |x| = \begin{cases} &\sf{ \:  \:  \:  x \:  \: when \: x \:   \leqslant   \: 0} \\ &\sf{ \:  - x \:  \: when \: x \:  >  \: 0} \end{cases}\end{gathered}\end{gathered}

Thus,

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  x - |x| = \begin{cases} &\sf{ \:  x + x \:  \: when \: x \:   \leqslant   \: 0} \\ &\sf{ \: x - x \:  \: when \: x \:  >  \: 0} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  x - |x| = \begin{cases} &\sf{ \:  2x \:  \: when \: x \:   \leqslant   \: 0} \\ &\sf{ \: 0 \:  \: when \: x \:  >  \: 0} \end{cases}\end{gathered}\end{gathered}

Now,

We know,

\red{ \boxed{ \sf{ \: \frac{1}{ \sqrt{x} } \: is \: de\:fined \:when \: x \:  >  \: 0}}}

Now,

We have,

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: x -  |x|  = \begin{cases} &\sf{0 \:  \: when \:  \: x \geqslant 0} \\ &\sf{ - ve \:  \: when \: x \:  <  \: 0} \end{cases}\end{gathered}\end{gathered}

\bf\implies \:\dfrac{1}{ \sqrt{x -  |x| } }  \: is \: not \: de\:fined \:  \forall \: x \:  \in \: R

\bf\implies \:Domain \: of \: f(x) = \dfrac{1}{ \sqrt{x - |x| } } \: is \:  \phi \: or \:  \{ \:  \}

Similar questions