Science, asked by a7398613546, 7 months ago

what is the dot product of two vectors of magnitude 3and 5 if angle between them is 60degree

Answers

Answered by Mysterioushine
3

Given :

  • Magnitude of two vectors are 3 and 5
  • Angle between the two vectors = 60°

To find :

  • The Dot product of the two vectors

Solution :

Let the two vectors be \sf{\overrightarrow{A}} , \sf{\overrightarrow{B}} and angle between them as θ

The angle bewtween the two vectors is given by ,

  \star \: {\boxed{ \sf{ \purple{  \cos( \theta)  = \frac{ \overrightarrow{a}. \overrightarrow{b}}{ | \overrightarrow{a}| | \overrightarrow{b}|  } }}}}

Where ,

  • θ is the angle between them
  • \sf{{ | \overrightarrow{a}| | \overrightarrow{b}|  }} is the product of their magnitudes
  • \sf{\overrightarrow{a}. \overrightarrow{b}} is the dot product of the two vectors

We have ,

  • θ = 60°
  • \sf{{ | \overrightarrow{a}| }} = 3
  • {| \overrightarrow{b}|  } = 5

By substituting the values ,

  : \implies   \sf\cos(60)  =  \dfrac{\overrightarrow{a}. \overrightarrow{b}}{(3)(5)}  \\  \\  : \implies \sf \:  \cos(60)  =  \frac{\overrightarrow{a}. \overrightarrow{b}}{15}  \\  \\    : \implies \sf \:  \frac{1}{2}  =  \frac{\overrightarrow{a}. \overrightarrow{b}}{15}  \\  \\  :  \implies \sf \: 15 = 2(\overrightarrow{a}. \overrightarrow{b}) \\  \\   : \implies \sf \:  \frac{15}{2}  = \overrightarrow{a}. \overrightarrow{b} \\  \\   : \implies \sf \: 7.5 = \overrightarrow{a}. \overrightarrow{b} \\  \\  :  \implies { \underline{\boxed { \sf {\: \overrightarrow{a}. \overrightarrow{b} = 7.5}}}}

Hence , The dot product of the two given vectors is 7.5

Answered by abdulrubfaheemi
0

Answer:

Given :

Magnitude of two vectors are 3 and 5

Angle between the two vectors = 60°

To find :

The Dot product of the two vectors

Solution :

Let the two vectors be \sf{\overrightarrow{A}}

A

, \sf{\overrightarrow{B}}

B

and angle between them as θ

The angle bewtween the two vectors is given by ,

\star \: {\boxed{ \sf{ \purple{ \cos( \theta) = \frac{ \overrightarrow{a}. \overrightarrow{b}}{ | \overrightarrow{a}| | \overrightarrow{b}| } }}}}⋆

cos(θ)=

a

∣∣

b

a

.

b

Where ,

θ is the angle between them

\sf{{ | \overrightarrow{a}| | \overrightarrow{b}| }}∣

a

∣∣

b

∣ is the product of their magnitudes

\sf{\overrightarrow{a}. \overrightarrow{b}}

a

.

b

is the dot product of the two vectors

We have ,

θ = 60°

\sf{{ | \overrightarrow{a}| }}∣

a

∣ = 3

{| \overrightarrow{b}| }∣

b

∣ = 5

By substituting the values ,

\begin{gathered} : \implies \sf\cos(60) = \dfrac{\overrightarrow{a}. \overrightarrow{b}}{(3)(5)} \\ \\ : \implies \sf \: \cos(60) = \frac{\overrightarrow{a}. \overrightarrow{b}}{15} \\ \\ : \implies \sf \: \frac{1}{2} = \frac{\overrightarrow{a}. \overrightarrow{b}}{15} \\ \\ : \implies \sf \: 15 = 2(\overrightarrow{a}. \overrightarrow{b}) \\ \\ : \implies \sf \: \frac{15}{2} = \overrightarrow{a}. \overrightarrow{b} \\ \\ : \implies \sf \: 7.5 = \overrightarrow{a}. \overrightarrow{b} \\ \\ : \implies { \underline{\boxed { \sf {\: \overrightarrow{a}. \overrightarrow{b} = 7.5}}}}\end{gathered}

:⟹cos(60)=

(3)(5)

a

.

b

:⟹cos(60)=

15

a

.

b

:⟹

2

1

=

15

a

.

b

:⟹15=2(

a

.

b

)

:⟹

2

15

=

a

.

b

:⟹7.5=

a

.

b

:⟹

a

.

b

=7.5

Hence , The dot product of the two given vectors is 7.5

Similar questions