Math, asked by hammagri2020, 12 hours ago

What is the equation of the ditectrix of the parabola y² - 10x - 10= 0

Answers

Answered by llAestheticKingll91
2

Answer:

refer to the attachment

Step-by-step explanation:

What is the equation of the ditectrix of the parabola y² - 10x - 10= 0

Attachments:
Answered by OoItzJaanoO
2

Answer:

y

y 2

y 2 =10x

y 2 =10xcomparewithy

y 2 =10xcomparewithy 2

y 2 =10xcomparewithy 2 =10

y 2 =10xcomparewithy 2 =108a=10

y 2 =10xcomparewithy 2 =108a=10∴a=

y 2 =10xcomparewithy 2 =108a=10∴a= 4

y 2 =10xcomparewithy 2 =108a=10∴a= 410

y 2 =10xcomparewithy 2 =108a=10∴a= 410

y 2 =10xcomparewithy 2 =108a=10∴a= 410 =

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 2

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n=

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0Itistheequationofdirectrix.

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0Itistheequationofdirectrix.

y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0Itistheequationofdirectrix.

Similar questions