What is the equation of the ditectrix of the parabola y² - 10x - 10= 0
Answers
Answer:
refer to the attachment
Step-by-step explanation:
What is the equation of the ditectrix of the parabola y² - 10x - 10= 0
Answer:
y
y 2
y 2 =10x
y 2 =10xcomparewithy
y 2 =10xcomparewithy 2
y 2 =10xcomparewithy 2 =10
y 2 =10xcomparewithy 2 =108a=10
y 2 =10xcomparewithy 2 =108a=10∴a=
y 2 =10xcomparewithy 2 =108a=10∴a= 4
y 2 =10xcomparewithy 2 =108a=10∴a= 410
y 2 =10xcomparewithy 2 =108a=10∴a= 410
y 2 =10xcomparewithy 2 =108a=10∴a= 410 =
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 2
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n=
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0Itistheequationofdirectrix.
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0Itistheequationofdirectrix.
y 2 =10xcomparewithy 2 =108a=10∴a= 410 = 25 Rquationofdirectionisn=−a⇒n= 2−5 2n+5=0Itistheequationofdirectrix.