Math, asked by satendrasinh411, 1 year ago

What is the equation of the line perpendicular to y=−32x that passes through (2,−4)?

Answers

Answered by Anonymous
6
 \textsf{\Large{\underline{Straight Lines}}} :

 \textsf{\underline{Correction}} :  \mathsf{y \:=\:{\dfrac{-3}{2}x}}

 \textsf{\underline{Solution}} :

Given, y =  \mathsf{\dfrac{-3}{2}x}

Points = \mathsf{( \:2,\: - 4\:)}

 \mathsf{x\: = \:2} and \mathsf{ y\: =\: - \:4}

Comparing the given equation with slope intercept - form,

 \boxed{\mathsf{y\:=\:mx\:+\:c}}

We get,

 \mathsf{m \:= \:{\dfrac{-3} {2}}}

Let  \mathsf{m_1 \:= \:{\dfrac{-3} {2}}}

For this we have to find the Slope of given equation,

For Slope of Perpendicular line,

 \boxed{\mathsf{m_1\:m_2\:=\:-1}}

Here,  \mathsf{m_1\:=\:{\dfrac {-3} {2}}}

 \mathsf{m_2\:=\:m}

Now putting these values in above formula of finding slope,

\mathsf{\dfrac{-3}{2}\:m\:=\:-1}

➡️ \mathsf{m\:=\:{\dfrac{2}{3}}}

Equation of perpendicular line,

\mathsf{y\:=\:mx\:+\:c}

 \mathsf{-4\:=\:{\dfrac{2*2}{3}\:+\:c}}

 \mathsf{c\:=\:-4\:-\:{\dfrac{4}{3}}}

 \mathsf{c\:=\:-4\:-\:{\dfrac{4}{3}}}

 \mathsf{c\:=\:{\dfrac{-16}{3}}}

Putting this value of c and m in general equation of slope - intercept form,

\mathsf{y\:=\:mx\:+\:c}

\mathsf{y\:=\:{\dfrac{2}{3}x\:-\:{\dfrac{16}{3}}}}

\mathsf{3y\:=\:2x\:-\:16}

\boxed{\mathsf{2x\:-\:3y=\:16}}
Similar questions