Math, asked by ciaralindsay04, 5 months ago

What is the exact value of tan(67.5°)?

1. square root 3
2. square root 3/3
3. square root 2-square root2 devided by 2 plus square root 2
4. square root 2+ square root2 devided by 2 minus square root 2​

Attachments:

Answers

Answered by MaheswariS
9

\underline{\textbf{To find:}}

\mathsf{The\;value\;of\;tan(67.5^\circ)}

\underline{\textbf{Solution:}}

\underline{\textbf{Formula used:}}

\mathsf{cos\,2A=\dfrac{1-tan^2A}{1+tan^2A}}

\mathsf{Consider,\;cos\,135^\circ}

\mathsf{=cos(90^\circ+45^\circ)}

\mathsf{=-sin\,45^\circ}

\mathsf{=-\dfrac{1}{\sqrt{2}}}

\mathsf{Take,\;\theta=67.5^\circ}

\implies\mathsf{2\theta=135^\circ}

\implies\mathsf{cos\,2\theta=cos\,135^\circ}

\textsf{Using the above formula,}

\mathsf{\dfrac{1-tan^2\theta}{1+tan^2\theta}=-\dfrac{1}{\sqrt{2}}}

\mathsf{\sqrt{2}-\sqrt{2}\,tan^2\theta=-1-tan^2\theta}

\mathsf{\sqrt{2}+1=\sqrt{2}\,tan^2\theta-tan^2\theta}

\mathsf{\sqrt{2}+1=(\sqrt{2}-1)\,tan^2\theta}

\mathsf{tan^2\theta=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}}

\mathsf{Multiplying\;both\;numerator\;and\;denominator\;by\;\sqrt{2}}

\mathsf{tan^2\theta=\dfrac{2+\sqrt{2}}{2-\sqrt2}}

\textsf{Taking square root on bothsides, we get}

\mathsf{tan\theta=\pm\sqrt{\dfrac{2+\sqrt{2}}{2-\sqrt2}}}

\implies\mathsf{tan\,67.5^\circ=\pm\sqrt{\dfrac{2+\sqrt{2}}{2-\sqrt2}}}

\mathsf{But\;67.5^\circ\;is\;acute,\;tan\,67.5^\circ\;is\;positive}

\implies\boxed{\mathsf{tan\,67.5^\circ=\sqrt{\dfrac{2+\sqrt{2}}{2-\sqrt2}}}}

Answered by junaida8080
2

Answer:

The exact value is tan(67.5)=\sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2} } }.

Step-by-step explanation:

Given trigonometric angle is tan 67.5°.

We need to find the value of the tan at that angle.

To find this value, we use the value of tan 135°.

We can see that,

135=2\times 67.5

Taking tan on both sides,

tan(135)=tan(2\times 67.5)

We know the value of tan 45° = 1

We can write,

tan(135)=tan(90+45)

=-cot(45)

Since tan(90+x)=-cotx.

tan(135)=-1

We know the formula,

tan2A=\frac{2tanA}{1-tan^2A}.

tan(2\times67.5)=\frac{2tan(67.5)}{1-tan^267.5}

-1=\frac{2tan67.5}{1-tan^267.5}

Cross multiply the above equation, we get

-1+tan^267.5=2tan67.5

tan^267.5-2tan67.5-1=0

tan67.5=\frac{-(-2)+\sqrt{(-2)^2-4(-1)}}{2(1)}, \frac{-(-2)-\sqrt{(-2)^2-4(-1)}}{2(1)}

tan67.5=\frac{2+2\sqrt{2}}{2}, \frac{2-2\sqrt{2}}{2}

tan67.5=1+\sqrt{2}, 1-\sqrt{2}

Since tan67.5 is positive, because it is in 1st Quadrant.

So the value is

tan67.5=1+\sqrt{2}.

Now in option 4) the answer is \sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2}}}.

Rationalising the numerator and denominator, we get

\sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2}}\times \frac{2+\sqrt{2}}{2+\sqrt{2}}}

=\sqrt{\frac{(2+\sqrt{2})^2}{4-2} }

=\frac{2+\sqrt{2}}{\sqrt{2}}

=\sqrt{2}+1

=tan67.5°

So the correct answer is 4.

tan(67.5)=\sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2} } }.

Similar questions