Math, asked by jonas, 1 year ago

what is the factorisation of 2y^{2} - 38y - 228

Answers

Answered by TPS
1
2Y² - 38Y -228
=2(Y²-19Y-114)
GENERALLY YOU NEED TO FIND TWO NUMBERS SO THAT
1.THEIR SUM IS -19 
2.PRODUCT IS -114

BUT IN THIS CASE, IT IS NOT POSSIBLE.

SO FIRST FIND THE SOLUTION BY 
Y =  \frac{-(-38) + ((-38)^2-4*2*(-228)) ^1/2}{2*2}  AND  \frac{-(-38) - ((-38)^2-4*2*(-228)) ^1/2}{2*2}
OR Y =  \frac{1}{2} (19 + √817) AND  \frac{1}{2} (19 - √817)

NOW ONCE YOU GET THE SOLUTIONS, YOU CAN DIRECTLY WRITE THE FACTORIZATION AS 

2(Y -  \frac{1}{2} (19 + √817))(Y -  \frac{1}{2} (19 - √817))



TPS: If p and q are roots of an equation, x^2 + ax + b =0, it can be factorized as (x-p)(x-q)
jonas: ok ....ty :)
Answered by kvnmurty
1
2 (y² - 19 y - 114 ) 

114 = 3 * 2 * 19   - factorization does not seem to be possible directly with these factors.

roots are  = [ - b +- sqrt(b² - 4a c) ] / 2 
           = [19 +- sqrt(361 + 456) ] / 2 = (19+ √817 )/ 2  and (19-√817)/2

So three factors are : 2 ,  [ y - (19 + √817) /2 ] and  [ y - (19 - √817)/2 ] 


kvnmurty: thanx n u r welco
Similar questions