Math, asked by tenzintsomu960, 5 months ago

what is the formula of cot3A? ​

Answers

Answered by radhamann1986
6

Answer:

prove that cot3A = 3cotA - cot^3A/1 - 3cot^2A.

Answered by ArunSivaPrakash
2

The formula for cot3A is \frac{cot^{3}A - 3cotA }{3cot^{2}A - 1} .

Given:

Given the trigonometrical term for which the formula is to be found,

That is, cot3A.

To Find:

We have to find the formula for cot3A.

Solution:

The trigonometrical formula for cot (A + B) is given by,

Cot (A + B) = \frac{cotA.cotB - 1}{cot A + cot B}.

Put A = B to get,

Cot (2A) = \frac{cot^2A - 1}{2. cot A}.

Therefore, formula for cot3A is given by,

cot 3A = cot (2A + A).

Using the formula of formula for cot (A + B), the above equation can be rewritten as,

cot 3A = cot (2A + A) = \frac{cot2A.cotA - 1}{cot 2A + cot A}

On substituting for cot2A, the above equation becomes,

cot 3A = \frac{(\frac{cot^2A - 1}{2.cot A}) cotA - 1}{(\frac{cot^2A - 1}{2.cot A}) + cot A}

= \frac{\frac{cot^3A - cot A - 2.cotA}{2.cotA} }{\frac{cot^2A - 1 + 2.cot^2A}{2.cot A}}

= \frac{cot^{3}A - 3cotA }{3cot^{2}A - 1} .

i.e., cot 3A = \frac{cot^{3}A - 3cotA }{3cot^{2}A - 1} .

Other expressions for cot3A are:

cot3A = \frac{cos3A}{sin3A} and

cot3A = \frac{1}{tan3A}.

Hence, the formula for cot3A is \frac{cot^{3}A - 3cotA }{3cot^{2}A - 1} .

#SPJ2

Similar questions