what is the formula of Sin 5 theta
BhawnaAggarwalBT:
no
Answers
Answered by
60
Here theta is denoted by A
sin5A = sin(3A+2A)
= sin3Acos2A+cos3Asin2A
=(3sinA-4sin³A)(1–2sin²A) + cos(2A+A)sin2A
=3sinA-10sin³A+8sin^5A+ [cos2AcosA- sin2AsinA]sin2A
=3sinA-10sin³A+8sin^5A+ [(1–2sin²A)cosA- 2sin²AcosA]2sinAcosA
=3sinA-10sin³A+8sin^5A+[cosA-4sin²AcosA]2sinAcosA
=3sinA-10sin³A+8sin^5A+2sinAcos²A- 8sin³Acos²A
=3sinA-10sin³A+8sin^5A+2sinA(1-sin²A)-
8sin³A(1-sin²A)
=3sinA-10sin³A+8sin^5A+2sinA-2sin³A-8sin³A+8sin^5A
=5sinA-20sin³A+16sin^5A[Proved]
sin5A = sin(3A+2A)
= sin3Acos2A+cos3Asin2A
=(3sinA-4sin³A)(1–2sin²A) + cos(2A+A)sin2A
=3sinA-10sin³A+8sin^5A+ [cos2AcosA- sin2AsinA]sin2A
=3sinA-10sin³A+8sin^5A+ [(1–2sin²A)cosA- 2sin²AcosA]2sinAcosA
=3sinA-10sin³A+8sin^5A+[cosA-4sin²AcosA]2sinAcosA
=3sinA-10sin³A+8sin^5A+2sinAcos²A- 8sin³Acos²A
=3sinA-10sin³A+8sin^5A+2sinA(1-sin²A)-
8sin³A(1-sin²A)
=3sinA-10sin³A+8sin^5A+2sinA-2sin³A-8sin³A+8sin^5A
=5sinA-20sin³A+16sin^5A[Proved]
Answered by
0
Answer:
16sin^5@-20sin^3@+5sin@
Step-by-step explanation:
@=theta
easy way to remember
sin5@ so odd no5,3,1
remember these no 20,-16,5
put them together
16sin^5@-20sin^3@+5sin1@
Similar questions