What is the greatest positive integer less than 100 that has an odd number of positive divisors. explain step by step .
Answers
Answered by
6
Answer:
81
Step-by-step explanation:
If number is perfect square it has odd number of divisiors .
So greatest perfect square less then 100 is 81 .
Check
Start by 99
divisors 1 , 3 , 9 , 33 ,11 , 99
So it's not our answer .
98 = 1 , 2 ,7 , 14 , 49 , 98
97 = 1 , 97
96 = 1 , 2 , 3 , 6 , 8 , 12 , 24 , 32 , 48 , 96
95 = 1 , 5 , 19 , 95
94 = 1 , 2 , 47 , 94
93 = 1 , 93
92 = 1 , 2 , 2 , 23 , 46 , 92
91 = 1 , 91
90 = 1 , 2 , 3 , 5,6 , 10 , 18 , 30 , 45 , 90
89 = 1 , 89
88 = 1 , 2 , 4 , 8, 11 , 22 ,44 , 88
87 = 1 , 3 , 29 , 87
86 = 1 , 2 , 43 , 86
85 = 1 , 5 , 17 , 85
84 = 1 , 2 , 3, 4, 6 , 7 , 12,14 , 21,28 , 42 ,84
83 = 1 , 83
82 = 1 , 2 ,41 ,82
81 = 1 , 3 , 9, 27,81
There are such √100 = 10 numbers .
Answered by
3
Answer: 81
81/3=27
I hope this will be helpful for you
81/3=27
I hope this will be helpful for you
Similar questions