Math, asked by rathyshreyarajeshkan, 3 months ago

what is the laplace transform of the first derivative of the function y(t) with resptive t : y(t) mcq​

Answers

Answered by siddharthmalhotra7
54

Answer:

what is the laplace transform of the first derivative of the function y(t) with resptive t : y(t) mcq

Answered by pulakmath007
1

The Laplace transform of the first derivative of the function y(t) with respective t is sY(s) – y(0) where Y(s) is Laplace transform of y(t)

Given :

The function y(t)

To find :

The Laplace transform of the first derivative of the function y(t) with respective t

Solution :

Step 1 of 2 :

Define Laplace transform

The Laplace Transform of y(t), denoted by L{y(t)} and defined as :

\displaystyle \sf{ L\{y(t)\} =Y(s) = \displaystyle  \sf\int\limits_{0}^{\infty} e^{-st} y(t)\, dt }

Step 2 of 2 :

Find Laplace transform of the first derivative of the function y(t) with respective t

\displaystyle \sf{ L\{y'(t)\}  }

\displaystyle  \sf=  \int\limits_{0}^{\infty} e^{-st} \:  y'(t)\, dt

\displaystyle  \sf= e^{-st} \:  y(t) \bigg|_{0}^{\infty}   - ( - s)\int\limits_{0}^{\infty} e^{-st} \:  y(t)\, dt

\displaystyle  \sf=0 -  y(0)    + s\int\limits_{0}^{\infty} e^{-st} \:  y(t)\, dt

\displaystyle  \sf= -  y(0)    + sY(s)

\displaystyle  \sf=  sY(s) - y(0)

Similar questions