Math, asked by arnavjaiswal070597, 7 months ago

What is the last term of the AP? 11, 19,27, 35,

Answers

Answered by Creepyboy95
9

\sf{\gray{\underbrace{\purple{QUESTION:}}}}

\implies\bold{What \:is \:the \:last \:term \:of \:the \:AP? \:11, \:19,\:27, \:35,\:}

\sf{\gray{\underbrace{\purple{ANSWER:}}}}

\bold{Find \:the \:difference \:between \:the \:members\:}

\impliesa2-a1=11-3=8

\impliesa2-a1=11-3=8

\impliesa3-a2=19-11=8

\impliesa4-a3=27-19=8

\impliesa5-a4=35-27=8

<b>The difference between every two adjacent members of the series is constant and equal to 8

\bold{General \:Form\: an=a1+(n-1)d\:}

\impliesan=3+(n-1)8

\impliesa1=3

\impliesan=35

\impliesd=8

\impliesn=5

\bold{Sum \:of \:finite \:series \:members\:}

&lt;b&gt;The sum of the members of a finite arithmetic progression is called an arithmetic series.</p><p>Using our example, consider the sum

\implies3+11+19+27+35

&lt;b&gt;This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 3 + 35 = 38), and dividing by 2:

 \frac{n(a1 + a2)}{2}

 \frac{5(3 + 35)}{2}

&lt;b&gt;The sum of the 5 members of this series is 95</p><p>This series corresponds to the following straight line y=8x+3

\bold{Finding \:the \:nth \:element\:}

\implies&lt;br&gt;a3 =a1+n-1 d =3+3-1 8 =19

\implies&lt;br&gt;a11 =a1+n-1 d =3+11-1 8 =83

\implies&lt;br&gt;a19 =a1+n-1 d =3+19-1 8 =147

\implies&lt;br&gt;a27 =a1+n-1 d =3+27-1 8 =211

Similar questions