Math, asked by manju95695, 2 months ago

what is the least number to subtracted from each of the following numbers to get a perfect square number also found the square root of the perfect square numbers thus obtained (i) 402 (ii) 1989 (iii) 3250 (iv) 825 (v) 4000


please answer the question

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-i}}

\rm :\longmapsto\: \sqrt{402}

Using Long Division we have

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:20 \:\:}}}\\ {\underline{\sf{2}}}& {\sf{\:\:402 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \: \: \: \: 4  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{40}}}& {\sf{\:\: \: \: \: \: 002 \: \:  \:\:}} \end{array}\end{gathered}

So, 2 must be subtracted from 402 to make it a perfect square.

So, Required number is 402 - 2 = 400

\rm :\longmapsto\: \sqrt{400} = 20

\large\underline{\sf{Solution-ii}}

\rm :\longmapsto\: \sqrt{1989}

Using Long Division

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:44 \:\:}}}\\ {\underline{\sf{4}}}& {\sf{\:\:1989 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \:\:  \:  \: 16 \: \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{84}}}& {\sf{\:\: \: \: \: \:389 \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 336\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  53  \:\:}} \end{array}\end{gathered}

So, 53 must be subtracted from 1989 to make it a perfect square.

So, Required number is 1989 - 53 = 1936

\rm :\longmapsto\: \sqrt{1936}  = 44

\large\underline{\sf{Solution-iii}}

\rm :\longmapsto\: \sqrt{3250}

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:57 \:\:}}}\\ {\underline{\sf{5}}}& {\sf{\:\:3250 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \:\:  \:  \: 25 \: \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{104}}}& {\sf{\:\: \: \: \: \:750 \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 749\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  1  \:\:}} \end{array}\end{gathered}

So, 1 must be subtracted from 3250 to make it a perfect square.

So, Required number is 3250 - 1 = 3249

\rm :\longmapsto\: \sqrt{3249}  = 57

\large\underline{\sf{Solution-iv}}

\rm :\longmapsto\: \sqrt{825}

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:28 \:\:}}}\\ {\underline{\sf{2}}}& {\sf{\:\:825 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \:\:  \:  \: 4\: \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{48}}}& {\sf{\:\: \: \: \: 425\:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 384\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  41  \:\:}} \end{array}\end{gathered}

So, 41 must be subtracted from 825 to make it a perfect square.

So, Required number is 825 - 41 = 784

\rm :\longmapsto\: \sqrt{784}  = 28

\large\underline{\sf{Solution-v}}

\rm :\longmapsto\: \sqrt{4000}

Using Long Division, we have

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:63 \:\:}}}\\ {\underline{\sf{6}}}& {\sf{\:\:4000 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: \:\:  \:  \: 36 \: \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{123}}}& {\sf{\:\: \: \: \: \:400 \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 369\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  31  \:\:}} \end{array}\end{gathered}

So, 31 must be subtracted from 4000 to make it a perfect square.

So, Required number is 4000 - 31 = 3969

\rm :\longmapsto\: \sqrt{3969}  = 63

Answered by kamleshkumar1122k
3

Answer:

Maine bhi apko 2 thank or 2 brainlist diya mare ko or do or lo

give more take morr

Similar questions