Math, asked by khansanju854303, 2 months ago

 What is the measure of interior angles of a regular polygon with 12 sides *​

Answers

Answered by BabeHeart
3

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\large{\textbf{\underline{\color{indigo}{『 Ԛʋᥱꜱtioᥰ:-』}}}}}

ғɪɴᴅ ᴛʜᴇ ʀᴀᴅɪᴀɴ ᴍᴇᴀsᴜʀᴇ ᴏғ ᴛʜᴇ ɪɴᴛᴇʀɪᴏʀ ᴀɴɢʟᴇs ᴏғ ᴀ ʀᴇɢᴜʟᴀʀ ᴘᴏʟʏɢᴏɴ ᴏғ 12 sɪᴅᴇs.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \large{\textbf{\underline{\color{indigo}{『 Ꭺnѕwєr:- 』}}}}}

 \sf \: We  \: know \:  that ,  \\ \sf for  \: an \:  n-sided  \: polygon, \\   \sf \: the \:  sum \:  of  \: all  \: interior \:  angles  \: is  \:  \\  \sf \: (n−2)×180

 \sf \: Therefore, \:  for  \: a  \: regular \:  polygon, \\ \sf  the \:  measure \:  of  \: each  \: interior \:  angle \:  is \:  \\  \bf  \frac{n(n−2)×180°}{n}

 \bf \green {Given  \: that,} \\ \sf  \:  the \:  regular  \: polygon \:  has  \: 12 \:  sides.

  \sf \large \: {\therefore \:  \frac{(12 - 2)180°}{12} }

  \sf \large\implies \:  \frac{10 \times 180°}{12}

 \sf \large \implies \:  (\frac{5 \times 180°}{6}  ) = 150°

  \sf\therefore  Each \:  angle  \: in \:  radian \:  = 150° \times  \frac{π}{180}  =  \frac{5π}{6}

 \bf \green {Hence, \:  the  \: radian  \: measure \:  of  \: the  \: interior }\:  \\ \bf\green{angles \: of  \: a  \: regular \:  polygon  \: of  \: 12  \: sides \:  is}  \bf \large \red { \frac{5π}{6} }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions