Math, asked by lakshyu19, 1 year ago

what is the quadratic polynomial whose sum of the zeroes is -3/2 and the product of the zeroes is -1

Answers

Answered by nitirocks12pehtmu
2
Put the sum and product of zeroes in x² -(sum of zeroes) x + product of zeroes, to get the required quadratic polynomial.
GIVEN:
sum of zeroes = -3/2
product of zeroes = -1
The required quadratic polynomial =k[ x² -(sum of zeroes) x + product of zeroes]
The required quadratic polynomial= k[x² -(-3/2) x +(-1)]
Take k=2
2[x² -(-3/2) x -1]
=2x²+3x-2
Hence, The required quadratic polynomial= 2x²+3x-2

Hope it helps you!!!
Answered by SANDHIVA1974
1

 \large \dag Question :-

what is the Quadratic polynomial the sum of whose zeroes is    \sf\dfrac{ - 3}{ \:  \: 2}

and the product of the zeroes is -1

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{Polynomial   \:  is \:  2x^2+3x-2}} }\\

 \large \dag Step by step Explanation :-

❒ We Know that general form of any quadratic polynomial is :

  \red \bigstar \small \: \blue{\bigg \{ \underline{ \overline{\boxed{\rm  {x}^{2}  - (Sum \: of \: zeros)x + Product \: of \: zeros}}}  \bigg\}}

☆ Here in this question we have ;

Sum of Zeros =    \sf\dfrac{ - 3}{ \:  \: 2}

Product of Zeros =    \sf-1

⏩ Substituting values in general form of quadratic polynomial ;

 \small:\longmapsto \rm Req{}^{d}.  \:  Poly nomial    =  {x}^{2}  -  \bigg(  \frac{ - 3}{ \:  \: 2} \bigg)x + ( - 1) \\

:\longmapsto \rm Req{}^{d}.  \:  Poly nomial  =  {x}^{2}  +  \frac{3}{2} x  - 1\\

: \green{\longmapsto\underline{\underline{{  \purple{ \rm Req{}^{d}.  \:  Poly nomial  =2x^2+3x-2 }}}}}\\

 \large \dag Additional Information :-

❒ Quadratic Polynomial with one Variable :

✪ The general form of the equation is ax² + bx + c = 0.

If a = 0, then the equation becomes to a linear equation.

If b = 0, then the roots of the equation becomes equal but opposite in sign.

If c = 0, then one of the roots is zero.

❒ Nature Of Roots :

✪ b² - 4ac is the discriminate of the equation Then ,

If b² - 4ac = 0, then the roots are real & equal.

If b² - 4ac > 0, then the roots are real & unequal.

If b² - 4ac < 0, then the roots are imaginary & no real roots.

Similar questions